
INTERBUS Club e.V. Basic profile V3.0 2018-04-19

Basic profile

10

V3.0

2018-04-19

09

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

 1/126

V. Lutz, system planning

2018-04-19 Basic profile V3.0 INTERBUS Club e.V.

2/126 Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 2018-04-19

Profile: Basic

Profile number: 10

Version: V3.0

Version counter: 09

Date: 2018-04-19

Publisher: INTERBUS Club Deutschland e.V.
 Head office
 Postfach 1108, 32817 Blomberg, Germany
 Telephone : +49 5235 34 21 00
 Fax : +49 5235 34 12 34

Copyright by INTERBUS Club Deutschland e.V.

All illustrations and descriptions have been created and checked to the best of the author's knowledge.
However, this does not release the user from the responsibility to undertake their own examinations
and tests. We reserve the right to make modifications of any type, particularly those that serve the
purpose of technical progress.

INTERBUS Club Deutschland e.V. assumes no liability for erroneous handling or damage resulting
from a failure to observe the information contained in this profile.

This profile, including all illustrations contained herein, is copyright protected.
Use of this profile by any third party deviating from the copyright provisions is forbidden.
Subject to modification

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

 3/126

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 2018-04-19

List of revisions

Index Date Modifications, additions or explanations
1.00 2002-10-14 Initial version
1.01 2004-08-12 • Supplement of the channel number in diagnostic object 0x0018 and the following

• Supplement of priorities 81, 82, 83 “Error is removed”, diagnostic object 0x0018 and
the following

• Revision/supplement of the fault codes
• Expansion of the handling description for diagnostic messages
• Object 0x000F, DeviceProfile mandatory
• Preface and appendix added
• Editorial revision
• Introduction of objects

 -0x002E – CheckSum
 -0x002F - PDOUT_Subst
 -0x0030 - PF_Code
 -0x0031 - PDIN_Subst
 -0x0032 - IBS_ID

• Definition of values for objects
 -0x0024 – IBSResetCode
 -0x0020 – PDTimeoutCode

1.02 2005-01-28 • Error correction (Re/Gr/formats/etc.)

• Object 0x0019, “ResetDiag”, name and meaning adapted
• Object 0x000F, “DeviceProfile”, type changed
• Fault codes expanded:

2344; 2345; 341X; 342X; 5230

1.10 06.06.20 • Object 0x0018, “DiagState.Channel” changed to “DiagState.Channel/Group”,
meaning adapted

• Object 0x0018, “DiagState. MoreFollows”, meaning adapted
• Object 0x001A, “GetErrorRepMethod”, name and description expanded
• Object 0x001D, “Password” adapted
• Object 0x0025, “PDIN”, additional explanation
• Object 0x0026, “PDOUT”, additional explanation
• Object 0x002E, “CheckSum”, type changed UINT16 => UNIT32
• Object 0x0033, “DiagStateChannelNumber”, newly added
• Object 0x0034, “DiagStateAddValue”, newly added
• Object 0x0035, “NoOfModules”, newly added
• Object 0x0036, “SubBusStructure”, newly added
• Object 0x0037, “DeviceType”, newly added
• Object 0x0038, “ObjDescrReq”, newly added
• Object 0x0039, “ObjDescr”, newly added
• Object 0x003A, “VersionCount”, newly added
• Object 0xE805, “ObjDescrLong”, newly added
• Object 0xE800, “DiagStateLong”, partially described as a reference to avoid double

descriptions
• Modular devices have been described. The Invoke ID, now “model number”, is used

for module addressing
• List of approved communication error types revised and supplemented
• Data“Bit-String” data type added.
• “Communication objects” section revised, restructured, and supplemented
• “Object description” section added
• Addition of error class 8, error code 1, profile-specific

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

 5/126

V. Lutz, system planning

2018-04-19 Basic profile V3.0 INTERBUS Club e.V.

1.11 2009-10-06 • Additional fault code revised

• Handling of object 0x0038 “ObjDescrReq” and object 0x0039 “ObjDescr” expanded
• Error class “8”, other, error code “1”, profile-specific, corrected consistently
• Visible String data type (always terminated “0x00”)
• Object 0x0037, “DeviceType”, revised slightly
• Object 0x0008, “ProductID” renamed “SerialNo” to avoid misunderstandings
• Fault codes 6800 and 6810 added, A000 and the following expanded and explained

in more detail
• Explanation of the object area for modular devices
• Object 0x003B, “PDIN_Descr”, newly added
• Object 0x003C, “PDOUT_Descr”, newly added
• Object 0x0019, “ResetDiag”, expanded and substantiated

1.12 2010-11-19 • Device family supplemented by digital/analog IN/OUT
• List of the data types completed
• LanguageCode corrected
• Length for visible string corrected
• Object 0x003B, “PDIN_Descr”, revised, new types added
• Object 0x003C, “PDOUT_Descr”, revised, new types added
• Object 0x000C, “FirmwareVersion” and 0x000B “PChVersion”, expanded by entries if

no FW/PChVersion is available
• Handling of priorities in diagnostic object 0x0018 “DiagState” explained
• Object 0x0019, “ResetDiag”, expanded and substantiated
• Object 0x0018.5, “ResetDiag.MoreFollows”, substantiated
• Additional fault codes added
• Object 0x0037, “DeviceType”, error corrected R/W => R, can never have been R/W
• Subindex “Access Rights”, “DisplayFormat”, “Resolution” and “Offset” added to object

0x0039 “ObjDescr”, description supplemented.
• Size index for “power” and “el. resistance” added
• Object 0x0020, 0x0024, 0x0030 UINT16 => Array of UINT16 changed and annotated
•

2.0 2011-12-07

• Basic profile “neutralized”, i.e., reference to INTERBUS and PCP has been removed.
• Comments on the version counters added
• Object 0x003D, “WakeUpTime”, added
• ResetCode explained in more detail
• Object 0x002D, ResetParam code “02”, added
• Object 0x0039, “ObjDescr”, incompatible, revised (minimum and maximum

moved)
• Translation table for the object names added to appendix
• Description of download services (download write, upload read), supplemented and

made more specific.
• Object 0x0011 error in the string length (10+1) corrected
• Object 0x0005, “Capabilities”, added
• Object 0x0038, “ObjDescrReq”, length corrected

6/126 Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 2018-04-19

3.0 2018-04-19 • New additional fault code “8.2 Hardware is temporarily faulty” added
• Description “Unique, consecutive fault number” substantiated
• Fault codes revised and explanations improved
• Various new fault codes determined,

such as A014, A025, 6340, 8F00
• Warning/fault (alarm) meaning substantiated
• 0x0005 “Capabilities” “Safety0” “ChPDWh_0” “SBM_0” added
• Remedy of various grammatical and linguistic errors
• Representation “N+1” used consistently
• Hex notations; 0x unified
• 3150 Polarity of supply voltage reversed
• Object 0x0004, “DeviceFamily”, supplemented by “Safety”
• Object 0x0005, “Capabilities”, data type changed: visible string => octet string
• Object 0x0013, “DeviceDescFile” renamed to “OnBoardDeviceDescFileName”, and

description substantiated.
• Object 0x0018 completely revised
• Object 0x0019, “ResetDiag”, rights changed: W = R/W
• Object 0x0019, “ResetDiag”, meaning substantiated and supplemented
• Object 0x001A, “GetErrorRepMethod”, description of bit 3 deleted
• Object 0x0020, “PDTimeoutCode”, values added
• Object 0x0024, “ResetCode”, values added
• Object 0x002A, ConflictDictionary, incompatible, modified
• Object 0x002D, “ResetParam”, rights now R/W and becomes mandatory, value 0x03

added
• “Replacement value” definition renewed
• Object 0x0030, “PF_Code”, values added
• Object 0x0033 Withdrawn
• Object 0x0034 Withdrawn
• Object 0x0035 NoOfModules => Sub-BusInfo including meaning changed
• Object 0x0036 ActSubBusStructure revised
• Object 0x0039 set to R/WD. Function explained.
• Object 0x0039.10 ObjectDescr.RNR (R 2 bytes) changed in UINT16(Dec)
• Object 0x0039.12 ObjDescr. access rights bit 0 - bit 3 changed due to corresponding

implementation of active = 1 to “Active = 0”
• Object 0x0039.12 ObjDescr. access rights bit 4 “Avoid Presentation” added
• Object 0x0039.13, ObjDescr.DiplayFormat: 0x08, “date” added
• Object 0x0039.16, ObjDescr.Symbol: description of bit strings added
• Object 0x003A VersionCount description added and substantiated
• Objects 0x003B, PDIN_Descr and 0x003C PDOUT_Descr type “SFCH”, “SafeI”,

“SafeO_F” - Channel for safe data newly added, mandatory and description added
• Object 0x003D, WakeUpTime, resolution added
• Object 0x003D, “WakeUpTime”, description substantiated, legacy information added
• Object 0x003E, “EnergyMgmt”, newly added
• Object 0x0040, “ListOfObjToRestore”, newly added
• Object 0x0041, “RefSubBusStructure”, newly added
• Object 0x0042, “DevicesStatus”, newly added
• Object 0x0043, “Sub-BusBehaviour”, newly added
• Object 0x0044, “ControlSub-Bus”, newly added
• Object 0x0045, “InitFWDownload”, newly added
• Object 0x0047, “AddInfo”, newly added
• Object 0x0047.01, “AddInfo.SafetyProtType”, newly added
• Object 0x0047.02, “AddInfo.SafetyProtVers”, newly added
• Object 0x0047.03, “AddInfo.LegacyInfo”, newly added

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

 7/126

V. Lutz, system planning

2018-04-19 Basic profile V3.0 INTERBUS Club e.V.

 • Object 0xE800, “DiagStateLong”: adapted to changed object 0x0018.
• Object 0xE809, “BackUpDataCompr”, added
• Object 0xE807, “DeviceFW”, added
• Object 0xE808, “OnBoardDeviceDescFile”, added
• Object 0xE806, “ComplDiagState”, newly added
• Editorial revision of “Notification via ... the DiagState object” section
• Editorial revision of “ConflictDictionary” section
• “Service-Parameter Error Type” definition added
• Overview of the data objects used added
• “Evaluation in the case of complex data objects” section added
• Presentation form amended for all objects
• Messages, information, notifications (only to Prio 83)
• Device family list 0004 supplemented by temperature modules
• Section 8.2.11. “Explanation on handling diagnostic object 0x0018” added.
• “Busy” function introduced
• Error code (8) “B for Busy” introduced
• “Object Record” and “Object Array” descriptions changed and error event described
• Additional codes added (0x005x), error class 0x08, error code 0x01
• Additional codes added (0x001D, 0x001E)
• Generator polynomials defined for upload read and download write
• “Notification via reading the DiagState object” section revised (message via bit in PD

omitted)
• Boolean definition added: “True = 0xFF, False = 0x00”
• R/WD introduced
• Reserved bits/bytes = “0” specified
• “Safety” introduced to precede device ranges
• “Information on handling individual parameters by the master” section added
• “Block parameterization” section substantiated
• “Addressing” section added
• “Substitute value behavior/switch-on behavior” section added
• “Volatile and non-volatile parameters” section added
• “Firmware download” section added
• “Functional safety - safety” section added
• The term “Terminal” was introduced
• Description of the domain variable added
• Macro services and domain variables/var lists set in relation to one another
• Lengths and object types standardized within the tables
• Communication profiles “636” and “637” added
• Error types instead of communication error codes
• “Undefined” added for data types and data codes 0x00
• “PDU length” section added
• Representation of additional codes revised
• Dependency information: explanation on dependencies added
• “Parameter record identification” section revised

 • 0x001E expanded by submodule and subindex
• Double description in object 0x002B ParamSet removed
• 0x002D ResetParam reset to factory defaults, legacy reset revised
• 0x003E.01 EnergyMgmt.ActualMode areas reserved
• 0x0039.0C “ObjDescr.Access Rights” revised
• 0x0039.07 “ObjDescr.UnitCode” supplemented and revised
• 0x0040 “ListOfObjToRestore” supplemented with submodule number
• 0x0048 => 0xE806 => 0xE809 numbers replaced
• 0xE809 BackUpDataCompr description substantiated
• 0xC000 – 0xC07F “ProjBasProf” introduced
• Capabilities changed back to visible string and some IDs shortened
• Alignment of 0x002A, 0x0035 objects adapted to 16 bits
• Invoke ID deleted
• Re/Gr word forms corrected
• CurrDiagState renamed => ComplDiagState
• intDeviceDescFile => OnBoardDeviceDescFile
• intDeviceDescFileName => OnBoardDeviceDescFileName
• Projection of basic profile changed to subbus module addressing
• 0x0035.06 “SubBusInfo.StartAddressPBP” => “SubBusInfo.SelectSubBusModule”

deleted
• 0x002A.01 ConfGrNo conflict group number added
• Additional Code 0x0024: “Index not available” added

8/126 Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 2018-04-19

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

 9/126

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Contents

1 Foreword .. 13
2 Application and device properties ... 14

2.1 General .. 14
3 General .. 15
4 Overview .. 15

4.1 Index areas of the communication objects .. 15
4.2 Overview of the standard objects .. 16

5 Communication objects ... 18
5.1 Data types .. 18
5.2 Data objects ... 18

5.2.1 “Domain variable” object .. 19
5.2.1.1 Domain variable - formal description ... 19

5.2.2 “Simple variable” object ... 20
5.2.2.1 Simple variable - formal description .. 20

5.2.3 “Array” object ... 20
5.2.3.1 Array variable - formal description ... 20

5.2.4 “Record” object .. 21
5.2.4.1 Record variable - formal description .. 21

5.2.5 “Variable list” object ... 22
5.2.5.1 Variable list - formal description .. 22
5.2.5.2 Static variable list ... 22
5.2.5.3 Dynamic variable list .. 23
5.2.5.4 Variable lists transmission format .. 23

5.2.6 “String variable” object ... 24
5.2.6.1 String variable - formal description .. 24

6 Services ... 25
6.1 Addressing ... 26

6.1.1 Addressing via subindex equal to “0” .. 26
6.1.2 Addressing via subindex unequal to “0” .. 26

6.2 Data length .. 27
6.3 Busy ... 27
6.4 Macro services... 28

6.4.1 Download function using write service (Download Write) 29
6.4.2 Upload function using read service (Upload Read) 32
6.4.3 Variable list download example ... 35

6.5 List of permissible communication error types .. 36
6.5.1.1 Error class and error code ... 36

6.5.2 Additional code .. 38
7 Standard objects .. 40

7.1 Identification... 42
7.1.1 Device range (DeviceFamily index 0x0004) .. 48
7.1.2 Communication profile (CommProfile, index 0x000E) 49
7.1.3 Device profile (DeviceProfile, index 0x000F) .. 50

7.2 Device diagnostics ... 51
7.2.1 Objects ... 51

7.2.1.1 Timing of diagnostic messages ... 57
7.2.1.2 Notification by reading the DiagState object ... 58
7.2.1.3 Notification via message (info report) from the “DiagState” object 58
7.2.1.4 Classification of faults (priority of messages) .. 59
7.2.1.5 Fault codes .. 60

7.2.2 Trace data .. 67
7.3 User data management ... 68

7.3.1 Process data management .. 68
7.3.2 Substitute value behavior/power-on behavior ... 75

7.3.2.1 Power-on behavior:.. 75
7.3.2.2 Substitute value behavior (failsafe behavior): ... 75

7.3.4 Functional safety – safety .. 76
7.3.5 Parameter channel management .. 77

7.4 Device management .. 78

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

1 Foreword
2.1 General

11/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.1 Device replacement application ... 81
7.4.2 Interdependent parameters ... 82

7.4.2.1 Block parameterization .. 82
7.4.3 Parameter record identification .. 84
7.4.4 Volatile and non-volatile parameters ... 85
7.4.5 Data backup ... 85
7.4.6 Firmware update .. 86
7.4.7 Password protection .. 90
7.4.8 Energy management (pre-implementation) ... 92

7.5 Multilingual capacity .. 94
7.6 Modular devices - subsystems .. 96

7.6.1 Basics .. 96
7.6.2 Parameters .. 96
7.6.3 Diagnostics .. 97

7.7 Object description .. 102
7.8 Onboard device description ... 109

8 Handling of individual parameters by the master .. 110
8.1 0x002D - ResetParam ... 110
8.2 Handling the error types .. 110
8.3 Extensions – access via subindex ... 110

9 Appendix A .. 113
9.1 Definition of terms .. 113
9.2 Symbols and abbreviations ... 115

10 Appendix B .. 117
10.1 Translation table for the object names .. 117

12/126 1 Foreword
2.1 General

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

1 Foreword

For factory-automated production of industrial sensors and actuators there is an ever-
increasing need for high-performing and flexible systems. Intelligent field devices can fulfill
these requirements. However, they must support open and standardized communication
capabilities in order to be fully integrated in complex production procedures.
The basic thinking behind open systems is to enable the exchange of information between
application functions implemented on devices from different manufacturers. This includes
specified application functions, a uniform user interface for communication and a uniform
transmission medium.

INTERBUS Club Deutschland e.V. has set itself the task of standardizing the most important
field device functions and bringing them together in this profile. To enable the definition of
field device functions regardless of the communication medium, an internationally recognized
and standardized IEC 61158 user interface was used for communication. This provided
continuity to the MMS (Manufacturing Message Specification ISO/IEC 9506).
No specific fieldbus system has been selected as a transmission medium. It must only meet
the requirements for field communication in terms of realtime behavior and a standardized
user interface.
The basic profile is aimed at all users and manufacturers of field devices that are to be
operated on a fieldbus. This profile definition is a useful addition to standardized
communication for the user and provides universal agreement on data content and device
behavior. These function definitions standardize the important field device parameters. When
using these standard parameters, devices from different manufacturers display uniform
behavior on the communication medium.
An independent specialist body will be set up for conformance testing and certification of
products with the basic profile. As standardization work continues, further additions can be
expected.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

1 Foreword
2.1 General

13/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

2 Application and device properties

2.1 General

This section describes the entire application in terms of communication. The application is divided into
the following function blocks:

Device functions
The device functions execute all the device-specific functions.

Device management
The device management manages the information, features and capabilities of a device. A non-
volatile memory can be used for this.

Communication functions
The communication functions execute all the communication-specific functions.

Interaction between the function blocks
1 Process variables
2 Process data from the higher-level control system to the device functions
3 Process data from the device functions to the higher-level control system
4 Storing device information for management, diagnostics, identification
5 Reading device information for management, diagnostics, identification
6 Mapping to the process data channel
7 Mapping to the parameter channel

Device functions Device management

Communication functions

 Process data channel Parameter

1 2, 3

4

6

14/126 2 Application and device properties
2.1 General

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

3 General

In addition to information about the current status of the device, modern field device
management and diagnostics also include information about the device itself, historical
status information, error images, etc.
Previously, very little of the information was provided as standard.
The aim of this document is to define a basic profile that will enable standardized
management of devices that are equipped with a parameter channel.
This basic profile enables device manufacturers to provide end users (as well as tools) with
considerably more information about their devices and associated features.
This “extra” information simplifies device startup, in particular, due to this standardization. As
for service work, there is also now the option to access certain diagnostic information in a
uniform and thus faster manner.

Understanding the profile:

“Information and sequences that are similar in terms of content are also displayed in a
standardized form, which aids manufacturers and users instead of restricting them.”

In order to meet this requirement, the relevant information is stored consistently in standard
objects. Mechanisms are defined that control access to these objects and specify standard
error types in the event errors.

4 Overview

4.1 Index areas of the communication objects
The communication objects in the basic profile are divided into the following index areas:

Index (hex) Name Object type
0 Object dictionary -
0001 – 0047 General standard objects

These objects are further described in this document.
Variable

0048 – 007F Reserved
0080 – 5FFF Manufacturer-specific application objects

Device manufacturers define their device-specific variable objects in this
area.

Variable

6000 – BFFF Profile-specific application objects
Further specific application objects can be found in the relevant profiles
(e.g., Drivecom, sensor/actuator, etc.)

Variable

C000 – C07F Projection of basic profile for subbuses Variable
C080 – DFFF Reserved
E000 – E3FF Static variable lists - access via macro services Variable list
E400 – E7FE Dynamic variable lists - access via macro services Variable list
E7FF Creating and reading variable list definitions - access via macro services Variable list structure
E800 – E809 General domain variables - access via macro services

These objects are further described in this document.
Domain variable

E80A – E83F Reserved domain variables - access via macro services Domain variable
E840 – E8FF Device-specific domain variables - access via macro services

Device manufacturers define their device-specific domain variables in
this area.

Domain variable

E900 – FFFF Reserved

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

3 General
4.1 Index areas of the communication objects

15/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

4.2 Overview of the standard objects

Index
(hex) Object name R/W Length

(in bytes) Data type M/O/D

0001 VendorName R 57+1, max. Visible string M
0002 VendorID R 6+1 Visible string O
0003 VendorText R 57+1, max. Visible string O
0004 DeviceFamily R 57+1, max. Visible string M
0005 Capabilities R N x 8 Array of octet strings[8] M
0006 ProductFamily R 57+1, max. Visible string O
0007 ProductName R 57+1, max. Visible string M
0008 SerialNo R 57+1, max. Visible string O
0009 ProductText R 57+1, max. Visible string O
000A OrderNumber R 57+1, max. Visible string M
000B HardwareVersion R 51, max. Record (2 elements) M
000C FirmwareVersion R 51, max. Record (2 elements) M
000D PChVersion R 51, max. Record (2 elements) M
000E CommProfile R 4+1, max. Visible string M
000F DeviceProfile R 4+1, max. Visible string M
0010 Reserved
0011 ProfileVersion R 51, max. Record (2 elements) M
0012 VendorURL R 57+1, max. Visible string O
0013 OnBoardDeviceDescFileName R 57+1, max. Visible string O
0014 Location R/W 57+1, max. Visible string O
0015 EquipmentIdent R/W 57+1, max. Visible string O
0016 ApplDeviceAddr R/W 2 UINT16 O
0017 Language R/W 56, max. Record (2 elements) M
0018 DiagState R 207, max. Record (6 elements) M
0019 ResetDiag R/W 1 UINT8 O
001A GetErrorRepMethod R/W 1 UINT8 O
001B TestMode R/W 2 UINT16 O
001C ControlTrace R/W 1 UINT8 O
001D Password R/W 40, max. Octet string[40] O
001E SetPassword R/W 45, max. Record (5 elements) O
001F PDTimeout R/W 2 UINT16 O
0020 PDTimeoutCode R/W N x 2 Array of UINT16 (N elements) O
0021 PChTimeout R/W 2 UINT16 M
0022 PChTimeoutCode R/W 2 UINT16 O
0023 AbortCode R/W 2 UINT16 O
0024 ResetCode R/W N x 2 Array of UINT16 (N elements) O
0025 PDIN R PD length Octet string[N] M
0026 PDOUT R/W PD length Octet string[N] M
0027 GetExRight R/W 1 UINT8 O
0028 ChangePDSet R/W 2 UINT16 O
0029 ParamSetWriteControl R/W 1 UINT8 O
002A ConflictDictionary R N x 8 Array of records (N x 6 elements) D
002B ParamSet R/W 2 UINT16 O
002C ParameterMoment R/W 20 Record (2 elements) O
002D ResetParam R/W 1 UINT8 M
002E ParamHash R 4 UINT32 O
002F PDOUT_Subst R/W PD length Octet string[N] D
0030 PF_Code R/W N x 2 Array of UINT16 (N elements) O
0031 PDIN_Subst R/W PD length Octet string[N] D
0032 FieldBus_ID R 3 Record (2 elements) O
0033 DiagStateChannelNo R 3 Record (2 elements) X
0034 DiagStateAddValue R 6 Record (2 elements) X
0035 SubBusInfo R 16 Record (6 elements) O

16/126 4 Overview
4.2 Overview of the standard objects

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0036 ActSubBusStructure R/W N x 8 Array of records (3 elements) D
0037 DeviceType R 8 Octet string[8] M
0038 ObjDescrReq R/W 3 Record (2 elements) D
0039 ObjDescr R/WD 58, max. Record (16 elements) D
003A VersionCount R 8 Array of UINT16 (4 elements) M
003B PDIN_Descr R N x 12 Array of records (N x 3 elements) M
003C PDOUT_Descr R N x 12 Array of records (N x 3 elements) M
003D WakeUpTime R 2 UINT16 M
003E EnergyMgmt R/W 5 Record (2 elements) O
003F Reserved
0040 ListOfObjToRestore R N x 4 Array of records (3 elements) M
0041 RefSubBusStructure R/W N x 8 Array of records (3 elements) D
0042 ModuleStatus R N x 1 Array of bit strings[8] D
0043 SubBusBehaviour R/W 3 Record (3 elements) D
0044 SubBusControl R/W 1 UINT8 (hex) D
0045 InitFWDownload R/W 58, max. Record (5 elements) O

0047.01 AddInfo.SafetyProtType R 8 Octet string[8] D
0047.02 AddInfo.SafetyProtVers R 8 Octet string[8] D
0047.03 AddInfo.LegacyInfo R 8 Octet string[8] D

C000
–

C07F
Projection of basic profile for subbuses Def. N

Complies in all respects with the
corresponding object in the basic
profile

D

E800 DiagStateLong UR N Domain variable record O
E801 DiagHistory UR N Domain variable record O
E802 DiagHistoryLong UR N Domain variable record O
E803 TraceBuffer UR N Domain variable octet string D
E804 LanguageAvailable UR N Domain variable record O
E805 ObjDescrLong UR N Domain variable record O
E806 ComplDiagState UR N Domain variable record O

E807 Device FW UR/D
W N Domain variable octet string D

E808 OnBoardDeviceDescFile UR N Domain variable octet string O

E809 BackUpDataCompr UR/D
W N Domain variable octet string O

R = Read only
W = Write only
R/W = Read/write
R/WD = Read/write dependent
UR = Upload Read
DW = Download Write

M/D/O
M = Mandatory
O = Optional
D = Dependent

For details on the abbreviations, see Appendix.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

4 Overview
4.2 Overview of the standard objects

17/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

5 Communication objects

The communication objects are not described in an object dictionary, instead they must
usually be recognized implicitly by the user, e.g., from a description of the objects in the user
manual for the relevant device.
This also applies to possible options/values. For information in permissible options/values of
an object, please refert to the user manual.
The descriptions/permissible values are only defined if they might be required during runtime.

5.1 Data types

Index of type

(dec)
Symbol description Number of bytes

0 Undefined N
1 Boolean* 1
2 INT8 1
3 INT16 2
4 INT32 4
5 UINT8 1
6 UINT16 2
7 UINT32 4
8 Floating point 4
9 Visible string (always terminated “0x00”)** 1,2,3 …

10 Octet string 1,2,3 …
11 Date 7
12 Time of day 6
13 Time difference 6
14 Bit string *** 1,2,3 …

* True = 0xFF, False = 0x00
** Visible strings are terminated 0x00 for simpler processing. When representing the length
of an object, this is taken into account by using notation “N+1”. “N” is the number of bytes of
the actually visible characters, and “+1” is the required 0x00 termination. “57+1, maximum”
means that the object can have a maximum of 57 bytes of visible characters and the final
0x00, resulting in a total length of 58 bytes including the final 0x00.
*** Bit strings always have a length of n x 8 bits, where nϵN (n element of the natural
numbers).

5.2 Data objects

Overview of the data objects used.

Object code Object
0x00 Undefined
0x02 Domain variable
0x07 Simple variable
0x08 Array variable
0x09 Record variable
0x0a Variable list

Static and dynamic
0x0B String variable

18/126 5 Communication objects
5.1 Data types

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

5.2.1 “Domain variable” object

Domain variables are objects with data lengths that can be larger than the maximum PDU
size of the simple standard services. The “domain variable” object is used to transmit user-
specific structured data of moderately large to very large size (bigger than (maximum PDU
size) bytes). The object description must be recognized implicitly by the application program.

 The domain variable object can usually only be addressed fully using the Download
Write and Upload Read macro services. In the 0x000E “CommProfile” object, the
“upload/download protocol” feature is characterized by the values (634 or 635).

The total size of the domain variable must not exceed the maximum user data volume of
[PDU size – 8) x 0xFFF0] (3.5 Mbytes, approximately).

In principle, any object index can be a domain variable. In order to make a simple distinction,
the domain variables are preferably assigned a specific are, see “Index areas of the
communication objects”. In this way, the master and slave implicitly know that they can
usually be accessed using the macro services.

Depending on the system, there may also be separate standard services for the
implementation of macro services. In the 0x000E “CommProfile” object, the “up/download
protocol” feature is characterized by the values (636 or 637).
In this case, the domain variables can optionally be accessed using the simple standard
services then, where required, partially via subindices, as long as the maximum PDU size of
this service is not exceeded.

5.2.1.1 Domain variable - formal description

Object: Domain variable
Object code: 0x02
Key attribute (M): Index
Attribute (M): Length (maximum PDU size – 8) x 0xFFF0 bytes)
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Download Write
 (O) Upload Read

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

5 Communication objects
5.2 Data objects

19/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

5.2.2 “Simple variable” object

The “simple variable” object represents a single, simple variable. The object description must
be recognized implicitly by the application program. The size of a simple variable must not
exceed the maximum amount of user data of (PDU size - 6) bytes.

5.2.2.1 Simple variable - formal description

Object: Simple variable
Object code: 0x07
Key attribute (M): Index
Attribute (M): Length (maximum (PDU size - 6) bytes)
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Information Report

5.2.3 “Array” object

The “array” object consists of a string of simple variables of the same data type. The object
description must be recognized implicitly by the application program.
If an element of the object is to be addressed, a subindex must also be specified in the
service next to the index. Subindex 1 accesses the first element of the object. Subindex 0
addresses the object as a whole. If errors due to an individual subindex occur while
accessing the entire object, the corresponding error type is created and all the data is
considered invalid.

There is no obligation to be able to address each element of an array individually.

The sum of user data of the individual array elements must not exceed the maximum
permissible amount of user data of (PDU size - 6) bytes.
In this case, it is a logical obligation to be able to address each element of an array
individually.

5.2.3.1 Array variable - formal description

Object: Array variable
Object code: 0x08
Key attribute (M): Index
Attribute (M): Length per element (maximum (PDU size - 6)

bytes)
Attribute (M): Number of elements
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Download Write
 (O) Upload Read
 (O) Information Report

20/126 5 Communication objects

5.2 Data objects
Basisprofil_V3.0_en.doc

x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

5.2.4 “Record” object

The “record” object consists of various elements. These are a string of simple variables of
different data types and string variables. The object description must be recognized implicitly
by the application program. The “record” object can be addressed as a whole or element by
element. If the object is to be addressed as a whole, the associated index is specified in the
service as subindex “0”.
If errors due to an individual subindex occur while accessing the entire object, the
corresponding error type is created and all the data is considered invalid.
If an entire object is addressed via subindex “0”, consistency is automatically ensured, which
would otherwise require considerable effort. It therefore does not make sense to transmit the
0x0018 “DiagState” object in its individual elements, for example. The effort required to
ensure consistency of the individual elements to one another would be too high.

If an element of the object is to be addressed, a subindex must also be specified in the
service next to the index. Subindex 1 accesses the first element of the object.

There is no obligation to be able to address each element of a record individually.

The sum of the user data of the individual record elements must not exceed the maximum
permissible amount of user data of (PDU size - 6) bytes.
In this case, it is a logical obligation to be able to address each element of a record
individually unless it is a domain variable.

5.2.4.1 Record variable - formal description

Object: Record variable
Object code: 0x09
Key attribute (M): Index
Attribute (M): Length per element (maximum (PDU size - 6) bytes)
Attribute (M): List of elements
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Download Write
 (O) Upload Read
 (O) Information Report

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

5 Communication objects
5.2 Data objects

21/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

5.2.5 “Variable list” object

A variable list is a special form of a domain variable that has been assigned an own index
area. It contains a summary of individual variables. The structure must be recognized
implicitly by the application program here too.

Compiling several individual variables into a variable list is only useful for variables with small
data types (e.g., UINT8, Interger32) In theory, the length of an individual variable in a
variable list can be a maximum of (PDU size – 8) bytes. However, a variable of this type can
be accessed more effectively using a normal read service.

5.2.5.1 Variable list - formal description

Object: Variable list
Object code: 0x0A
Key attribute (M): Index
Attribute (M): Number of elements
Attribute (M): List of element index
 Attribute (M): Index
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Download Write
 (O) Upload Read

5.2.5.2 Static variable list

Static variable lists can be created by the device manufacturer. These variable lists are found
in the “static variable lists” index area (see index areas of the communication objects).

The structure of the static variable list can be read using the “VariableListRecord” variable
(index E7FF). To do this, the index of the variable list to be read is written to object E7FF.
Download Write is to be used for this, as object E7FF is a domain variable. The
“VariableListRecord” can then be read using Upload Read access to object E7FF.

The “VariableListRecord” is transmitted according to the following structure:

Index (2 bytes) Meaning
First value Index of the first variable in the list
Second value Index of the second variable in the list
...
...
Nth value Index of the Nth variable in the list

22/126 5 Communication objects
5.2 Data objects

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

5.2.5.3 Dynamic variable list

Dynamic variable lists are created using the “VariableListRecord” variable (index E7FF).
These variable lists are found in the “dynamic variable lists” index area (see index areas for
communication objects). The “VariableListRecord” is created using Download Write to object
E7FF.

The “VariableListRecord” is transmitted according to the following structure:

Index (2 bytes) Meaning
First value Index under which the VariableListRecord should be created
Second value Index of the first variable in the list
Third value Index of the second variable in the list
...
...
N+1 value Index of the Nth variable in the list

5.2.5.4 Variable lists transmission format

To write/read a variable list, all the values of the individual variables are entered in the data
field of the Download Write/Upload Read one after the other.

 Meaning
First value Contents of the first variable in the list
Second value Contents of the second variable in the list
...
...
Nth value Contents of the Nth variable in the list

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

5 Communication objects
5.2 Data objects

23/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

5.2.6 “String variable” object

The “string variable” object represents a single, basic variable that is characterized by a
specific data type (octet string, visible string or bit string).
The object description of the string variable object is defined static. A string variable is
mapped to a real string variable that actually exists in the user system by means of the object
description for the “string variable” object.
In the description of the “string variable” object, only one data type, either octet string, visible
string or bit string, is permitted. A string variable has the same structure as a simple variable.
They only differ in terms of variable length of the data types. The maximum length is
configured in the memory. However, only the current length is transmitted.

5.2.6.1 String variable - formal description

Object: String variable
Object code: 0x0B
Key attribute (M): Index
Attribute (M): Maximum length (maximum (PDU size - 6)

bytes)
Attribute (O): Password

Services:
 (O) Read
 (O) Write
 (O) Download Write
 (O) Upload Read
 (O) Information Report

24/126 5 Communication objects
5.2 Data objects

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

6 Services

All basic variables, arrays, and records (amount of data < PDU size) are accessed using
simple/standard services. These are:

• Read
• Write
• Information Report/Fetch

As these services are functions of parameter channel implementation, they are not described
here. For additional information, please refer to the relevant parameter channel
documentation*).

*) E.g., IBS PCP RE HB E (5052b.pdf) and IBS PCP PR HB E (5054b.pdf)

All domain variables, lists, arrays, and records (amount of data > PDU size) are accessed
using the macro services: These are:

• Upload Read
• Download Write

If an object is accessed using the “Read” standard service and contains more data than
allowed by the PDU size, access is created using error type: error class: 05, error code: 02,
AddCode 0x0018 (service PDU size - object length is not compatible for this object).

If an object is accessed using the “Read” standard service and might contain more data than
allowed by the PDU size, but currently does not, error-free access is possible.

If an object is accessed using the “Write” standard service and can take more data than
allowed by the PDU size, error-free access is possible.

If an object is accessed using the “Download Write” macro service and can take less data
than written with a PDU, access created using error type: error class: 05, error code: 02,
AddCode 0x0018 (service PDU size - object length is not compatible for this object).

If an object is accessed using the “Upload Read” macro service and can supply less data
than allowed by the PDU size, error-free access is possible.

Domain objects and variable lists that are explicitly defined by an object index in the
assigned area can always be accessed using macro services.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
5.2 Data objects

25/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

6.1 Addressing

The objects of a device that are accessed using the services are addressed via the index
and subindex.
The following specifications must be observed:

6.1.1 Addressing via subindex equal to “0”

• Access via subindex “0” is mandatory and is therefore always available.
• Subindex “0” addresses the entire index object, including all subobjects.

In principle, it therefore is possible to access all the objects of all subindices using
subindex “0”. The structure (number, empty subindices, data lengths, etc.) of the
subobjects must therefore be recognized implicitly. For some implementations, this is
the only possible way to access subobjects.

• As the sum of data of all the subindices of an index can be greater than the maximum
PDU size, this can also mean that it might not possible to access all subobjects
together using subindex “0”.

• In the case of reading, the error is reported with error type “PDU size problem”
(error class = 0x05, error code = 0x02).
For this reason, objects should be avoided where the sum of the data lengths of the
subobjects is greater than the PDU size.

• In the case of writing, errors can also be reported with the error type “PDU size
problem” (error class = 0x05, error code = 0x02).
The slave can, however, also accept any smaller data length if this is appropriate in
the application.

• Read/write access may differ for the subindices of an index. As long as “read only”
objects are written with the same (already existing) values during common access,
this is not considered an error and is consequently not answered with an error type.

6.1.2 Addressing via subindex unequal to “0”

• Access via the subindex unequal to “0” is optional even if the subobject itself is
mandatory.

• Availability of this feature is therefore depending on the functions provided by the
slave.

• Access via a subindex is always mandatory if the sum of data of all subindices of an
index is greater than the PDU size.

• In principle each subobject addressed using a subindex is an independent object with
its own properties and meanings.

• Each subobject addressed using a subindex can use the entire user data length
available (maximum PDU size).

26/126 6 Services
6.1 Addressing

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

6.2 Data length

The amount of data to be transmitted varies – from “0” to “maximum PDU size”. It is specified
with each service. The master and slave inform the relevant partner about the amount using
the service.

The slave may accept any smaller data length if this is appropriate in the application.
This even is essential to ensure compatibility with previous devices on which objects have
been extended.

Explanation example:
Following a revision, an object now has a length of 11 bytes divided into 5 subobjects.
Before, it had a length of only 2 bytes and did not have any subindices. This means the old
content can now be addressed via subindex “1” (2 bytes).
Writing 2 bytes to subindex “0” now is permissible, and subindex “1” will be written correctly.
When reading via subindex “0”, the master (the application) has to ignore the third byte and
all subsequent bytes for reasons of compatibility.

In order not to limit transmission efficiency, particularly in the case of strings, only the number
of bytes that are actually required/defined will be transmitted.

6.3 Busy

There may be an exception in the event of a slave processing services. For example, the
user data may not yet be available in the slave application due to pending operations.

If a service from the slave application cannot be terminated in the time normally expected
(service timeout), this is reported with the “busy” error type (error class = 0x08, error code =
0x0B).
The master is notified that the slave application is active and the service is still being
processed but is not yet complete.

The estimated time still required for the results to become available is given in ms in the
additional code.
“0xFFFF” means that the estimated time for completion is unknown.

This error type is to be dispatched by the slave before the standard timeout period.

If the service is repeated with the same content within the estimated time given in the
additional code + the standard timeout period, the following takes place before the standard
timeout elapses:
• Either a positive response (this terminates the service)
• A different negative response (this also terminates the service)
• A negative response with this error type again In this case, the procedure described

above is started again.

The valid result is actively reported by the slave to the master via the report/fetch mechanism
following the time specified in the additional code + the standard timeout period at the latest.

The standard timeout period is defined in object 0x0021 “PChTimeout”.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.2 Data length

27/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

6.4 Macro services

Objects with a data length greater than the maximum PDU size of the basic standard service
and domain variable objects and variable list objects are accessed using the Download Write
and Upload Read macro services.
If the Download Write and Upload Read macro services are implemented, the “Up/Download
protocol” feature (634 or 635) must be entered in the 0x000E “CommProfile” object.

Depending on the system, there may also be separate standard services for the
implementation of macro services.

In principle, any object can be addressed using the standard services (as long as the data
length is smaller than the maximum PDU size) or using the macro services. To differentiate
the accesses, there must be separate standard and macro services. This is specified in
object 0x000E “CommProfile” object by means of the “up/download protocol” feature (636 or
637).

Handling of the macro services is described in the following:

28/126 6 Services
6.4 Macro services

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

6.4.1 Download function using write service (Download Write)

Unlike standard parameter channel implementation (which contains download services),
large volumes of data (e.g., application program, firmware update, variable lists, etc.) are
transmitted using the write service. To do this, a download transmission protocol is specified
in the user data of the write service that allows for segmented transmission of bigger data
volumes. Downloading can only be executed on domain variables and variable lists where
there is no other way to clearly identify the service.

Structure of the Download Write PDU
Parameter Req/Ind Rsp/Cnf
Communication reference M M
Module number M M
Index M
Subindex O
Data field M
 Segment number M
 Data M
Result(+) S

Result(-) S
Error type M

Communication reference/slot or device number

The communication reference addresses the desired communication partner.
(“Compact” implemented devices can only communicate with the master (not peer-to-peer),
which means that the communication reference is always 2.)

Module number

The “module number” parameter is used to address submodules of a modular device.
For more detailed information, please refer to the “Modular devices” section.

Index

The index parameter addresses the object to be written.

Subindex

The value of the subindex parameter for the download function is “0”.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.4 Macro services

29/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Data field

The data field parameter contains the download protocol.

Data field
Segment number
2-byte download control

User data
1 … (PDU size – 8) byte download data blocks
E.g., 1 ... 56 bytes for “Compact” implementation

Segment number

This parameter contains the number of the data block to be written, for which the following
definition applies:

Segment number = 1 Initiation of a download sequence with the first data

block.
Segment number = 2 ... 0xFFF0 Data block number N
Segment number = 0xFFFD The last data block only contains

• The number of transmitted data blocks (without this
end data block) (2 bytes) and

• The CRC16 residual polynomial1) (2 bytes)
Segment number = 0xFFFE The last data block only contains

• The number of transmitted data blocks (without this
end data block) (2 bytes) and

• The CRC32 residual polynomial1) (4 bytes)
Segment number = 0xFFFF The last data block only contains

• The number of transmitted data blocks (without this
end data block) (2 bytes) and no CRC residual

1) The CRC is always generated using all the pure user data. The segment numbers are not part of
the user data.
The following generator polynomials are used:
16-bit CRC: CRC CCITT:

x16 + x12 + x5 + 1
Initial value: 0xFFFF
Start with least significant bit.
The result of the CRC calculation (residual polynomial) is accepted immediately.

32-bit CRC: CRC-32 (IEEE 802.3):

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
Initial value: 0xFFFF.FFFF
Start with least significant bit.
The result of the CRC calculation (residual polynomial) is inverted at the end.

The download server must check that the segment number sequence is in ascending order
without any gaps and, in the event of an error, send a negative response to the client (usually
the fieldbus master). In the case of a negative response, the client can transmit the correct
segment or terminate transmission with an end segment.
Only an end data block can terminate the download service.

30/126 6 Services
6.4 Macro services

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Data

This parameter contains the data blocks. The length of these data blocks depends on the
maximum PDU size. For a 64-byte PDU, the maximum data block length is 56 bytes. The
maximum data block length does not have to be used.

Result(+)

The “Result(+)” parameter indicates a positive result. The segment number may only be
incremented if the result is positive.

Result(-)

The “Result(-)” parameter indicates a negative result.

Error type

The “Error type” parameter contains the error cause.

The content of the “Error type” parameter corresponds to the write service, with the following
definition for the specific download sequence error:

Error class “8” - Other
Error code “1” – Profile-specific

Additional code (hex) Meaning
0x00A0 Invalid segment number -
segment missing

Invalid segment number (segment missing)

0x00A1 Resource unavailable No more resources (memory) are available for downloading
0x00A2 Invalid CRC Incorrect CRC
0x00A3 File open error Error opening the file (if file system is available)
0x00A4 File write error Error writing the file (if file system is available)
0x00A5 File close error Error closing the file (if file system is available)
0x00A6 Segment missing Fewer data blocks were received than specified in the last segment
0x00A7 Segment overrun More data blocks were received than specified in the last segment
0x00A9 Invalid segment number –
double segment

Segment number invalid (segment duplicated, segment ignored)

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.4 Macro services

31/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

6.4.2 Upload function using read service (Upload Read)

Unlike standard parameter channel implementation (which contains upload services), large
volumes of data (e.g., application program, backups, variable lists, etc.) are read using the
read service. An upload protocol is defined in the subindex of the read service, which
enables segmented transmission of larger volumes of data. If the service cannot otherwise
be clearly marked, upload can be carried out to domain variables and variable lists.

Structure of the Upload Read PDU
Parameter Req/Ind Rsp/Cnf
Communication reference M M
Module number M M
Index M
Subindex M

Result(+) S
Data field M
 Segment number M
 Data M

Result(-) S
Error type M

Communication reference
Like download function using write service (Download Write)

Module number
Like download function using write service (Download Write)

Index
Like download function using write service (Download Write)

Subindex

An upload sequence is initiated using a special subindex, whereby the following definition
applies:

Subindex = 0xFF Initiation of an upload sequence with request for the first data block
Subindex = 0x00 Request for the next data block
Subindex = 0x01 Request for the relevant previous data block (e.g., after an error)

Result(+)

The parameter indicates a positive result. The segment number may only be incremented if
the result is positive.

32/126 6 Services
6.4 Macro services

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Data field

The data field parameter contains the upload protocol.

Data field
Segment number
2-byte upload control

User data
1 ... (PDU size – 8) byte download data blocks
1 ... 56 bytes for “Compact” implementation

Segment number

This parameter contains the number of the data block to be read, for which the following
definition applies:

Segment number = 1 Initiation of an upload sequence with the first data

block
Segment number = 2 ... 0xFFF0 Data block number N
Segment number = 0xFFFD The last data block only contains

• The number of transmitted data blocks (without
this end data block) (2 bytes) and

• The CRC16 residual polynomial1) (2 bytes)
Segment number = 0xFFFE The last data block only contains

• The number of transmitted data blocks (without
this end data block) (2 bytes) and

• The CRC32 residual polynomial1) (4 bytes)
Segment number = 0xFFFF The last data block only contains

• The number of transmitted data blocks (without
this end data block) (2 bytes) and no CRC
residual

1) The CRC is always generated using all the pure user data. The segment numbers are not part of

the user data.
The following generator polynomials are used:
CRC-16: CRC-CCITT: x16 + x12 + x5 + 1
CRC-32: IEEE 802.3: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

The upload client must check the segment number sequence is in ascending order without
gaps. In the event of an error, the client can request the last segment again with subindex
0xFE or restart the upload with subindex 0xFF.

Data

This parameter contains the data blocks. The length of these data blocks depends on the
maximum PDU size. For a 64-byte PDU, the maximum data block length is 56 bytes. The
maximum data block length does not have to be used.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.4 Macro services

33/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Result(-)

This parameter indicates a negative result.

Error type

The “Error type” parameter contains the error cause.

The content of the “Error type” parameter corresponds to the read service, with the following
definition for the specific upload sequence errors:

Error class “8” - Other
Error code “1” - Profile-specific

Additional code (hex) Meaning
0x00A0 Invalid segment number - segment missing Upload without initiation with subindex = 0xFF
0x00A3 File open error Error opening the file (if file system is available)
0x00A5 File close error Error closing the file (if file system is available)
0x00A8 File read error Error reading the file (if file system is available).

34/126 6 Services
6.4 Macro services

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

6.4.3 Variable list download example

In this example, a “Compact” device uses the following objects, which are grouped into a
variable list.

Index
(hex)

Subindex Data type Length Example value (hex)

0080 0 UINT8 1 FF
0081 7 UINT16 2 12 34
0090 3 UINT8 1 00
0091 0 Octet string 16 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0100 0 Octet string 16 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
0101 0 Octet string 16 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
0105 0 Octet string 16 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

The grouped variable list in this example is
stored under index 0xE000.

Download Write

First Download Write request/indication

Parameter Content (hex)
Com. ref. 02
Module number 00
Index E0 00
Subindex 00
Segment no. 00 01
Data FF 12 34 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16

17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Second Download Write request/indication

Parameter Content (hex)
Com. ref. 02
Module number 00
Index E0 00
Subindex 00
Segment no. 00 02
Data 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Third Download Write request/indication

Parameter Content (hex)
Com. ref. 02
Module number 00
Index E0 00
Subindex 00
Segment no. FF FF
Data 00 02

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.4 Macro services

35/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

6.5 List of permissible communication error types

If an error occurs when writing/reading the object, e.g., transmission of invalid values, access
is to be rejected using the appropriate error types (see below).

Communication error types only exist as a negative confirmation of a parameter channel
service (standard services).

Error messages that occur during communication via the parameter channel:
The error type service parameter consists of the following parameters:
• Error class 1 byte, UINT8, hexadecimal notation
• Error code 1 byte, UINT8, hexadecimal notation
• Additional code 2 bytes, UINT16, hexadecimal notation

6.5.1.1 Error class and error code

Error class Error code Meaning
2 Application
reference

 This error class refers to the communication relationship which is used to process
the service.

 1 Application
unreachable

0x0201 Access to the object is not possible because the application is not
implemented/present. This error type is typical where an attempt is made to
access a non-existing module of a modular device using the module number.
Module not present or module number incorrect.

 0 Other 0x0200 Errors of this class cannot be assigned to any of the previously given
error types.

5 Service This error class is reported in the event of a faulty service. This affects all
parameters with the exception of the actual object.

 1 Object state
conflict

0x0501 The current object state prevents the service from being executed.

 2 Service PDU
size

0x0502 PDU size problem. If more data is to be transmitted than the agreed
maximum PDU size allows, for example.

 3 Object
constrain
conflict

0x0503 It is temporarily not possible to execute the service.

 4 Parameter
inconsistent

0x0504 The service contains inconsistent parameters.

 5 Illegal
parameter

0x0505 A parameter has an invalid value.

 0 Other

0x0500 Errors of this class cannot be assigned to any of the previously given
error types.

6 Access This error class is reported in the case of faulty access. This only affects the
actual object.

 1 Object
invalidated

0x0601 Access relates to a defined object that has an undefined reference
attribute. This represents a permanent error for access to this object.

 2 Hardware
fault

0x0602 Access to the object failed due to a hardware fault. More detailed
information about the cause can be found in the additional code (glob. = 8 and 9)

 3 Object access
denied

0x0603 The client's access rights are insufficient.

36/126 6 Services
6.5 List of permissible communication error types

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

 4 Invalid

address

0x0604 Access to an invalid internal address.

 5 Object
attribute
inconsistent

0x0605 The attribute has an invalid value. More detailed information about the
cause can be found in the additional code (glob. = 1)
If more or less user data bytes are to be transmitted than is permissible for a
specific object, for example.

 6 Object access
unsupported

0x0606 The object is not a variable access object.

 7 Object non-
existent

0x0607 There is no existing object under this index/subindex.

 8 Type conflict 0x0608 The data does not correspond to the data type of the object.

 A Data not yet
available

0x060A The object data can currently not be accessed (e.g., during re-
parameterization).

 0 Other

0x0600 Errors of this class cannot be assigned to any of the previously given
error types.

8 Other
(application)

0 Other 0x0800 The service has not been executed. The reason is specific to the
application/manufacturer and only affects the actual data item. More detailed
information about the cause can be found in the additional code.
A specific object value cannot be permissible in this specific application, for
example.

 1 Device
profile-specific

0x0801 The service has not been executed. The reason is specific to the device
profile (0x000F). More detailed information about the cause can be found in the
additional code.
All the additional codes listed in this profile are profile-specific.

 B Busy 0x080B The service cannot be terminated in the time normally expected by the
slave application.
The estimated time still required for the data to become available is given in ms in
the additional code. “0xFFFF” means that the estimated time for completion is
unknown.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.5 List of permissible communication error types

37/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

6.5.2 Additional code

The additional code is made up of global, specific and device-specific components. Provision of global
and specific codes is optional. This means: additional code = 0x0000 is output if it is not possible to
provide information on the cause of the error by the application.
The specific code contains a more detailed description of the error cause defined in the global code. If
the error cause does not correspond logically to a specific code, specific code = 0 must be specified.

2 octets, normally with the following structure:

Bit 15 8 7 4 3 0

Device-specific Global code Specific code

The values for bits 8 to 15 (device-specific code) are reserved and currently filled with the value 0.

All the additional codes listed in this profile are profile-specific.

Additional code

[hex]
Meaning

0000 No detailed information on the cause of error
0010 Service parameter with invalid value
0011 Subindex not available
0012 Object access is not a request
0013 Reserved service code
0014 Subslot not supported
0015 Object access type not supported on this object
0016 Object access request index for this AccessType must equal 0x0000
0017 Object access request length for this AccessType must equal 0
0018 Object length is not suitable for this object (see also: additional code 001D and 001E

0019 Object is ReadOnly and may not be overwritten.Error class = 0x06; error code = 0x03
001 A Object is WriteOnly and cannot be read

Error class = 0x06; error code = 0x03
001B Write/read service for this object is not supported

Error class = 0x05; error code = 0x05
001C Upload Read or Download Write is required for access to the object due to the object length.

Error class = 0x05; error code = 0x02
001D Object length is not suitable for this object (0018) – too much data is transmitted

Error class = 0x06; error code = 0x05
001E Object length is not suitable for this object (0018) – Not enough data is transmitted

Error class = 0x06; error code = 0x05
0020 Service cannot be executed at present
0021 Service cannot be executed at present as the device is currently being controlled locally.
0022 Service cannot be executed in current device state (device control).
0023 Service cannot be executed at present as no object dictionary is available.
0024 Index not available
0030 Value range of a parameter out of range (the server cannot provide the value)

Error class = 0x08; error code = 0x01
0031 Parameter value too large

Error class = 0x08; error code = 0x01
0032 Parameter value too small

Error class = 0x08; error code = 0x01
0040 Dependency ignored

Collision with other values, dependency ignored
0041 Communication object cannot be mapped to the process data
0042 Process data length exceeded
0050 FW update: error class = 0x08; error code = 0x01

Firmware incorrect for the device – Firmware could not be processed by the device (general,
no detailed information). See also “Firmware update” section

38/126 6 Services
6.5 List of permissible communication error types

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0051 FW update: Upload Read or Download Write required for access to the object due to the
object length.
FW header or update version incorrect

0052 FW update: error class = 0x08; error code = 0x01
FW below minimum FW version – Firmware incorrect for device (e.g., hardware too old)

0053 FW update: error class = 0x08; error code = 0x01
Indicates the option to bypass the download of a FW update block to the device

0080 Hardware fault
0081 Application failed
0082 Hardware is temporarily faulty
00A0 Invalid segment number

e.g., upload without initiation with subindex == 0xFF
00A1 Resource not available

No more resources (memory) are available for downloading
00A2 Wrong CRC
00A3 Error opening the file (if file system is available)
00A4 Error writing the file (if file system is available)
00A5 Error closing the file (if file system is available)
00A6 Segment missing

Fewer data blocks were received than specified in the last segment
00A7 One segment too much

More data blocks were received than specified in the last segment
00A8 Error reading the file (if file system is available).
00A9 Invalid segment number (segment duplicated, segment ignored)
00B1 The password cannot be replaced (deleted).
00B2 The password cannot be added (too many passwords).
00B3 The password cannot be assigned for the desired type of access.

Codes that are not listed are reserved.

If a manufacturer cannot assign an error message to any of the above codes, the
INTERBUS Club should be contacted.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

6 Services
6.5 List of permissible communication error types

39/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7 Standard objects

The following objects are described in the form:

Index (hex) Unique object identifier

The service uses this index to access the object.

.Subindex (hex) Additional unique identifier for the subobject
The services uses this index to access the subobject.*)

Object name Name of the object

R/W Restricted access, see below

Length Length of the object in bytes

Data type
(representation)

Data type of the object, see above
Form in which the value is represented.

Meaning Explanation of the object contents

M/D/O Implementation instruction
M = Mandatory
 This object must be implemented.
O = Optional

This object must be implemented exactly in this way if the device supports
the corresponding (optional) function.

D = Dependent
Whether the object must be implemented depends on whether another
associated object was implemented or another specified condition is
fulfilled.
Subobjects must generally be implemented together with the object.
The sufficient condition in each case is defined under “Dependency info”.

*) Separate access via a subindex larger than “0” is optional, even if the subobject itself is
mandatory.

Access restrictions

R Read only,

this object can only be read
W Write only,

this object can only be written
R/W Read/write,

this object can be read and written
R/WD Read/write,

this object can be read and can also be written under certain conditions
UR Upload Read,

this object can be read using the “Upload Read” service
The “Read” standard service can only be successfully executed if the amount of data is < PDU
size.
Otherwise, error type: error class: 05, error code: 02, AddCode 0x0018 (service PDU size -
Object length for this object incorrect) is generated*)

DW Download Write,
this object can be written using the “Download Write” service.
The “Write” standard service can always be executed because the amount of data is < PDU
size.*)

*) See also Section “Domain-variable object”

To ensure standard access using tools, the objects, if they exist, must generally be
implemented exactly in the form defined in the following. However, the device manufacturer
40/126 7 Standard objects

6.5 List of permissible communication error types
Basisprofil_V3.0_en.doc

x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

can adapt the contents to meet requirements. For example, a hardware status that cannot be
determined by the device firmware for technical reasons could be represented as follows:

000B HardwareVersion R 51 bytes,

maximum
Record

(2 elements)
Hardware version
(device or communication module)

M

.1 • BuildDate R 10+1
bytes

Visible string 0000-00-00

M

.2 • Version R 39+1
bytes,

maximum

Visible string Not available M

If only some of the bits in a bit string or only some of the bits or bytes in an octet string have
a function, the reserved bits and bytes are defined “0”.
If values not equal to “0” are written, an error type must be generated in order to recognize
incompatibility.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
6.5 List of permissible communication error types

41/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.1 Identification

The information specified in the following objects describes the device itself, the
manufacturer and the field of application of the device. On dispatch, the data entered must
match up with what is printed on the device.

Index
(hex) Object name R/

W Length
Data type

(representatio
n)

Meaning M/O

0001 VendorName R 57+1
bytes,
maxim

um

Visible string
(text)

Manufacturer name
e.g., Phoenix Contact GmbH & Co KG

M

0002 VendorID R 6+1
bytes

Visible string
(text)

Manufacturer ID
Unique manufacturer identifier according to
Organizationally Unique Identifiers (OUI):
http://standards.ieee.org/regauth/oui/index.shtml
e.g., “00A045”

O

0003 VendorText R 57+1,
maxim

um
bytes

Visible string
(text)

Manufacturer text
Comments on the manufacturer
e.g., address, industry, etc.

O

0012 VendorURL R

57+1,
maxim

um
bytes

Visible string
(text)

Manufacturer URL
URL of the manufacturer's homepage, product
page, promotion page, etc.
e.g., www.phoenixcontact.com

O

0007 ProductName R 57+1
bytes,
maxim

um

Visible string
(text)

Product name
Manufacturer-specific unique product designation
e.g., IB IL 24 DO 8

M

0008

SerialNo
(ProductID)

R 57+1
bytes,
maxim

um

Visible string
(text)

Serial number
Manufacturer-specific unique device code, e.g.,
123456789

O

0009

ProductText R 57+1
bytes,
maxim

um

Visible string
(text)

Product text
Manufacturer-specific product text
e.g., digital output module

O

000A OrderNumber

R 57+1
bytes,
maxim

um

Visible string
(text)

Order No.
Manufacturer-specific unique product type ID, e g.,
order number
e.g., 2726269

M

42/126 7 Standard objects
7.1 Identification

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

http://standards.ieee.org/regauth/oui/index.html
http://standards.ieee.org/regauth/oui/index.shtml
http://www.phoenixcontact.com/

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0037 DeviceType R 8

byte
Octet string[8]

(hex)
Device type
Manufacturer-specific device/module identification
not equal to “0”
The manufacturer-specific device/module
identification, together with the VendorID, enables
exchange and operation of similar devices within a
configuration. For example, a 16-channel output
module with screw connection technology can be
replaced by a module with spring-cage connection
technology even though it does not have the same
order number. Different functions also require a
different DeviceType.

If this object is used in a modular device, it can also
identify a dummy. “0” if the module is not (yet)
installed. Nevertheless, data can be mapped to the
process data in this case.

M

0032 FieldBus_ID R 3
bytes

Record
(2 elements)

Fieldbus identification O

.01 • ID code R 1
byte

UINT8
(dec)

ID code
Fieldbus specific ID code (8 bits, usually
represented as a decimal number)

O

.02 • PDLength R 2
bytes

UINT16
(dec)

Process data length
Number of process data bits (unit: bit)

O

000B HardwareVersion R 51
bytes,
max.

Record
(2 elements)

Hardware version
(device or communication module)
On dispatch, the data entered must match up with what is printed
on the device.

M

.01 • BuildDate R 10+1
bytes

Visible string
(text)

Manufacturing date
Version date
Format YYYY-MM-DD
according to ISO 8601
e.g., 2002-11-29

M

.02 • Version R 39+1
bytes,
max.

Visible string
(text)

Version ID
e.g., 4.01 Beta customer

M

000C FirmwareVersion

R 51
bytes,
maxim

um

Record
(2 elements)

Firmware version
Components of a device or communication module
that can be modified from externally (also updated,
if required), e.g., firmware controller A, firmware
controller B, bootloader, FPGA image, etc.
There is only one user-relevant entry that is
determined by the manufacturer for all these
components. Manufacturer-specific objects that
specify the individual components more precisely
are permissible.
On dispatch, the data entered must match up with what is printed
on the device.
See also “Definition of terms”

M

.01 • BuildDate R 10+1
bytes

Visible string
(text)

Manufacturing date
Version date
Format YYYY-MM-DD
according to ISO 8601
e.g., 2002-05-03
If no FW is available, “0000-00-00” is entered

M

.02 • Version R 39+1
bytes,
max.

Visible string
(text)

Version ID
e.g., 1.03 customer
If no FW is available, “-” is entered

M

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.1 Identification

43/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

000D PChVersion R 51

bytes,
maxim

um

Record
(2 elements)

Parameter channel version
Parameter channel version
Parameter channel implementation version

M

.01 • BuildDate R 10+1
bytes

Visible string
(text)

Manufacturing date
Version date
Format YYYY-MM-DD
according to ISO 8601
e.g., 2016-12-01
If no parameter channel is available, “0000-00-00”
is entered

M

.02 • Version R 39+1
bytes,
maxim

um

Visible string
(text)

Version ID
e.g., “PCP Compact V1.10”
If no parameter channel is available, “--” is entered

M

0005

Capabilities R N x 8
bytes

Array of
visible

strings[8]
(text)

Device properties
Properties/functions of the device in addition to the
basic functions.
All the properties/functions listed in the following
are defined in this basic profile.

M

 • “Nothing”
No additional functions. The entry can also occur several times as a
dummy.

• “Safety0”
The slave supports secure data communication. This takes place in both
directions.

• “Energy0”
The slave supports energy management.

• “ChPDWh0”
The slave supports change of the process data width.

• “SubMa_0”
The slave is a subbus master. There is at least one additional subsystem
below this slave.

• “FwUpdt0”
The slave supports the firmware update.

The type is exactly 8 characters long. Unused characters are to be filled with
0x00.
If the slave supports the “Capabilities” object but no other additional function,
the “Nothing” entry is included at least once.

0006 ProductFamily R 57+1
bytes,

maximum

Visible string
(text)

Product range
Manufacturer-specific product range
e.g., Inline

O

0004 DeviceFamily R 57+1
bytes,

maximum

Visible string
(text)

Device range
(e.g., I/O, drive) according to specifications,
see below, e.g., motion control/frequency
converters
This object can contain several entries, which
are separated by a comma followed by a
space.

M

000E CommProfile R 4+1 bytes,
maximum

Visible string
(text)

Communication profile
System-specific profile ID, see below
e.g., 634

M

44/126 7 Standard objects
7.1 Identification

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

000F DeviceProfile R
4+1 bytes,
maximum

Visible string
(text)

Device profile
Identification of the application profile
according to which the device is specified, see
below
e.g., “10” for the basic profile or “22” for the
DRIVECOM profile

M

0011 ProfileVersion R 51 bytes,
maximum

Record
(2 elements)

Profile version
Version designation of this profile

M

.01 • BuildDate R 10+1
bytes

Visible string
(text)

Manufacturing date
“2018-04-19”

M

.02 • Version R 39+1
bytes,

maximum

Visible string
(text)

Version ID
Basic profile V3.0

M

0013 OnBoardDeviceDesc
FileName R

57+1
bytes,

maximum

Visible string
(text)

Name of the onboard device description file
File name of the internal (onboard) device
description file, e.g., XYZ.xml
If no onboard device description file exists, this
object will also not exist.

O

003A VersionCount R 8
bytes

Array of
UINT16

(hex)
(4 elements)

Version counter
Unique, ascending numbering as an integer for
the version of the corresponding objects
(components) with the following indices:
• 0x0011 “ProfileVersion”
• 0x000D “PChVersion”
• 0x000B “HardwareVersion”
• 0x000C “FirmwareVersion”
If a component is changed, the value in the
associated object (see above) must be
adapted. In this case, the associated
VersionCount subindex must be increased by
at least 1.
Gaps between two version counter readings
are permissible.

M

.01 • ProfileVersion R 2
bytes

UINT16
(hex)

Profile version
 0x0009
for this profile.

M

.02 • PChVersion R 2
bytes

UINT16
(hex)

Parameter channel version
e.g., 0x0002 for “Compact” version
implementation
If a device does not have a parameter channel,
0x0000 is entered.

M

.03 • HardwareVersion R 2
bytes

UINT16
(hex)

Hardware version
e.g., 0x0002 for the hardware version

M

.04 • FirmwareVersion R 2
bytes

UINT16
(hex)

Firmware version
e.g., 0x0105 for the firmware version
If a device does not have firmware, 0x0000 is
entered.

M

0047 AddInfo R 16
bytes

Record
(2 elements)

Additional information
Miscellaneous additional information is
contained in the following subindices.

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.1 Identification

45/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.01 • SafetyProtType R 8
bytes

Octet string[8]
(text)

Safety protocol type
• “IBSSafe0” INTERBUS-Safety
• “SBT_0” SafetyBridge protocol
• “PROFI_0” PROFISafe protocol
• “CIP_0” CIP safety protocol
• “FSoE_0” FSoE safety protocol
• “OpenS_0” Open safety protocol

The type is exactly 8 characters long. Unused
characters are to be filled with 0x00.

Dependency info:
This object must be implemented if the device
supports a safety protocol.

D

.02 • SafetyProtVers R 8
bytes

Octet string[8]
(text)

Safety protocol version
Exactly 8 characters are available for this
version. Unused characters are to be filled with
0x00.

D

.03 • LegacyInfo

R
/

W

8
bytes

Octet string[8]
(text)

Information about previous version
The user can enter a manufacturer-specific
code in order for the device to behave like a
specific (previous) version of the device, if
possible.
Example:
Value “1.50” can be entered for a device with
firmware version 1.62. The device must then
behave like a device with firmware version
1.50.

The parameters are not automatically reset to
the default values.

If the specified identifier is not supported, a
negative confirmation with error type 0x08,
0x01 and AddCode, e.g., 0x0032, is created.

Dependency info:
This object must be implemented if an
exchange-compatible previous version exists
for the device that does not have at least one
object/subobject that is implemented in the
current version.

D

0014 Location R
/

W

Maximum
57+1
bytes

Visible string
(text)

Installation location
Text that was stored by the device user in this
parameter. This text indicates the installation
location of the device and is stored in a non-
volatile memory.
E.g., machine 1, back-left
The content is normally written to the device
only once, during startup (naming).

O

46/126 7 Standard objects
7.1 Identification

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0015

EquipmentIdent

R
/

W

Maximum
57+1
bytes

Visible string
(text)

Equipment ID
Text that was stored in this parameter by the
device user. The equipment ID is stored in a
non-volatile memory. The device user can, for
example, store a description about device
operation here.
E.g., M1H747h.l.
The content is normally written to the device
only once, during startup (naming).

O

0016 ApplDeviceAddr R
/

W

2
bytes

UINT16
(dec)

Application-specific device address (user-
defined device number)
Any identification for this device in this specific
application. This number does not have to be
unique. Management is left entirely to the end
user.
E.g., 123
The content is normally written to the device
only once, during startup (naming).

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.1 Identification

47/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.1.1 Device range (DeviceFamily index 0x0004)

A unique designation for the device range.

En De
Actuator Aktor
Bus Coupler Buskoppler
Closed Loop Controller Regler
Dosing Device Dosiergerät
Drive Antrieb
Drive - Frequency Inverter Antrieb - Frequenzumrichter
Drive - Motor Starter Antrieb - Motorschalter
Drive - Servo Amplifier Antrieb - Servoverstärker
Drive - Stepper Motor Controller Antrieb - Schrittmotor-Steuerungcontroller
Encoder Encoder
Gateway Gateway
General Allgemeines
HMI HMI
HMI Display HMI-Anzeige
HMI Operator Panel HMI-Bediengerät
Hydraulic Device Hydraulik-Gerät
I/O E/A
I/O analog IN / OUT E/A analog IN / OUT
I/O analog IN E/A analog IN
I/O analog OUT E/A analog OUT
I/O digital IN / OUT E/A digital IN / OUT
I/O digital IN E/A digital IN
I/O digital OUT E/A digital OUT
I/O Temperature Module E/A- Temperaturmodul
I/O Function Module E/A-Funktionsmodul
Identification System Identifikationssystem
Media Converter active Medienkonverter aktiv
Media Converter passive Medienkonverter passiv
NC NC
NC/RC NC/RC
PC PC
PC Board PC-Karte
PLC SPS
PLC board SPS-Karte
Pneumatic Device Pneumatik-Gerät
Positioning Controller Positionier-Steuerung
Power Supply Stromversorgung
Robot Control Roboter
Safety Funktionale Sicherheit
Sensor Sensor
Switching Device Schaltgerät
Technology Controller Technologie-Steuerung
Valve Ventil
Weighing or Batching System Wiege- oder Dosiersystem
Welding Controller Schweißsteuerung
Wrenching Controller Schraubersteuerung
Safety-*) Safety-*)
*) “Safety” can be used to precede every device range.

If a manufacturer cannot assign a device to the above scheme, the INTERBUS Club should be
contacted.

48/126 7 Standard objects
7.1 Identification

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.1.2 Communication profile (CommProfile, index 0x000E)

This parameter contains a system-specific communication profile code.
The following communication profiles apply for “Compact” implementation:

63 Implementation Channel type Suitable for
632 Compact Fieldbus management,

compact parameter channel
No cyclic process data,
downloading/uploading of variable lists,
programs, etc.

633 Compact
Process data

Fieldbus management,
cyclical process data,
compact parameter channel

Parameterizable devices, only parameters,
no downloading/uploading of variable lists,
programs, etc.

634 Compact
Process data
Up/download
protocol

Fieldbus management,
cyclical process data,
compact parameter channel,
download, upload

Complex devices,
downloading/uploading of variable lists

635 Compact
Up/download
protocol

Fieldbus management,
compact parameter channel,
download/upload

Complex devices,
downloading/uploading of variable lists, no
cyclic process data

636 Compact
Process data
Explicit
up/download
standard services

Fieldbus management,
cyclical process data,
compact parameter channel,
downloading/uploading as
explicit standard services

Complex devices,
downloading/uploading of variable lists

637 Compact
Explicit
up/download
standard services

Fieldbus management,
compact parameter channel,
downloading/uploading as
explicit standard services

Complex devices,
downloading/uploading of variable lists, no
cyclic process data

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.1 Identification

49/126

V. Lutz, system planning

http://pc0360/ibcom/cp634.htm
http://pc0360/ibcom/cp634.htm
http://pc0360/ibcom/cp634.htm
http://pc0360/ibcom/cp634.htm

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.1.3 Device profile (DeviceProfile, index 0x000F)

This parameter contains information about the implemented device type profile of the device.
Structure of the parameter:

B15b12 b11b8 b7b4 b3b0
Profile group Version

DeviceProfile Meaning

0000 No profile
0010 Basic profile (basis for all other profiles)
0012 Sensor/actuator
0020 DRIVECOM process data only
0021 DRIVECOM frequency converter
0022 DRIVECOM servo
0030 Reserved
0040 Controller boards
0050 Reserved
0060 Reserved
0070 Encoder
0080 Process controller
0090 Robot controllers
00A0 Wrenching controllers
00B0 ISO valves
00C0 Welding controllers
00D0 Operating/display units
00E0 Hydraulics devices

FFFF More than one device profile

All others Reserved

If a device supports more than one device profile, 0xFFFF is entered into the DeviceProfile
parameter.
Although shown here as a hex value, the parameter is transmitted as a visible string with a
length of 4+1. The individual digits of the hex codes are transmitted as ASCII characters.

50/126 7 Standard objects
7.1 Identification

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.2 Device diagnostics

These objects are used to send diagnostic information about the status of the device and any
connected I/O devices to the application. The current diagnostic information for the device is
stored in the “DiagState” object. In addition, this information can be stored in long form in the
domain variables (index 0xE800).
A history of the diagnostic information can be found in the “DiagHistory” domain variable or
the “DiagHistoryLong” domain variable for the long form.

A negative service response reports an error while accessing an object (in particular due to
the transmitted parameter content).
An additional report about object “DiagState” 0x0018 must not be provided.

7.2.1 Objects

Index
(hex) Object name R/

W
Lengt

h
Data type

(representatio
n)

Meaning M/O

0018 DiagState R 207
bytes,
maxim

um

Record
6 elements

Diagnostic state
Current diagnostic state of the device in short
form
The diagnostic change speed should not fall
below one second.

M

.01 • Lfd.Nr. R 2
bytes

UINT16
(dec)

Consecutive no.
Unique, consecutive fault number since the last
power up reset or history reset.
The number is counted on for each fault, not
separately for incoming and outgoing. The fault
number is also counted up for faults that might
not have been reported because of their priority.

M

.02 • Priority R 1
byte

UINT8
(hex)

Priority
Fault priority
See “Classification of messages”

M

.03 • Channel R 1
byte

UINT8
(dec)

Channel
Channel on which the fault occurred. “0xFF”
refers to the entire device.

For additional information see “MoreFollows”

M

.04

• Code R 2
bytes

UINT16
(hex)

Fault code, see below M

.05 • MoreFollows

R 1
byte

Bit string 8
(bin)

Additional information
Information for interpreting the following data

M

 = “0x00” No further information
Bit0 = 1: There is additional information on this fault that can be read via the

“DiagStateLong” object.
Bit1 : Reserved (=0)
Bit2 : Reserved (=0)
Bit3 : Reserved (=0)
Bit4 = 1: There are additional simultaneously occurring diagnostic events

that can be read via the 0xE806 “ComplDiagState” object.
Bit 5-6: Reserved (=0)
Bit7 = 1: Identifier for this extended version of object 0x0018

.06 • Reserved R 2
bytes

Octet string[2]
(hex)

Reserved
This entry is reserved for 0x00.00

M

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

51/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.07 • SubModNo R 1
byte

UINT8
(dec)

Submodule number

If the device is a modular device, the
corresponding submodule is specified here.
See “Modular devices - subsystems” section
If the device is not a modular device, “0” is
entered here.

M

.08 • FunctionGroup R 8
bytes

Octet string[8]
(text)

Function group
Function groups that report diagnostics.

The type is exactly 8 characters long. Unused
characters are to be filled with 0x00.

The permissible function groups are listed in
objects 0x003B.1 and 0x003C.1.

If there are several groups of one type (e.g., 4
channels each of a 16-channel DO module),
the corresponding G number is appended. For
example, a DI 32 is made up of four groups:
DI-G1, DI-G4

The manufacturer-specific designation (“Relay
OUT”) is specified in the diagnostic text
(0x0018.11).

Remark:
Usually, “DIAG”, “CMD”, “STATUS”, etc., are
no useful function groups.

M

.09 • AddValue R 4
bytes

Octet string[4]
(hex)

Additional information
“Additional value” to the current diagnostic
state of the device.

Within certain limitations, the user has free
use:

In the case of subsystems, the subsystem-
specific diagnostic codes are entered here.

Where applicable, manufacturers are also
able to enter any legacy codes for their
diagnostics here.

Alternatively, a value associated with
diagnostics can be entered, e.g., “current
temperature when exceeding the limit
temperature”.

Usage described in the PROFINET I&M profile
is often followed.

Legacy information: former object 0x0034

M

.0A • TextLength R 1
byte

UINT8
(dec)

Text length
Length of the following diagnostic text in bytes

M

52/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

.0B • Text R 99+1
bytes,
maxim

um

Visible string
(text)

Diagnostic text

The occurred fault should be explained in
more device-specific detail here for the system
operator.
In addition to the fault type, the function
groups affected and the channels should also
be specified. Furthermore, the terminal point
can be specified if there is a reference to this
point. Finally, the user should always be given
an option for action.

Example:
“Overrange at AI channel 3 on terminal point
03, 13. Check sensor signal.“

The text is just an example and is not intended
for generic interpretation.

The string is terminated 0x00.
Default: “Status OK”

M

E806 ComplDiagState R Array of
Records

Complete current diagnostic state
Device diagnostic information in short form for
all messages still pending.
If the object is addressed via subindices,
these are to be assigned in ascending order
without a break.

O

.01 • DiagState1 Oldest diagnostic state in short form
- Object 0x0018

D

 … … D

.N • DiagStateN Newest diagnostic state in short form
- Object 0x0018

D

E800 DiagStateLong R Domain
variable
Record

Diagnostic state (long form)
Current diagnostic information of the device in
long form

O

Seg.1
-a

• Lfd.Nr. - Object 0x0018.1 D

-b • Priority - Object 0x0018.2 D

-c • Channel - Object 0x0018.3 D

-d • Code - Object 0x0018.4 D

-e • MoreFollows - Object 0x0018.5 D

-f • Reserved - Object 0x0018.6 D

-g • SubModNo - Object 0x0018.7 D

-h • FunctionGroup - Object 0x0018.8 D

-i • AddValue - Object 0x0018.9 D

-j • Date R 10+1
bytes

Visible string
(text)

Date on which the fault occurred, in the format
YYYY-MM-DD.
“0000-00-00” = No date available

D

-k • Time R 8+1
bytes

Visible string
(text)

Time at which the fault occurred, in the format
hh:mm:ss.
“00:00:00” = No time available

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

53/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

-l • TimeofOperation R 4
bytes

UINT32

(dec)

Absolute operating hours counter reading, at
which the fault occurred.
0 ... 4294967295 seconds
About 136 years
= “0” no operating hours counter available

D

-m • ParamSet R 2
bytes

UINT16
(dec)

Current valid parameter record number at
which the fault occurred.
“0000” = No specific parameter record

number available

D

-n • TraceData R 2
bytes

UINT16
(dec)

Start index for reporting associated trace data,
if applicable.
= “0000” no trace data available

D

Seg.2
-a

• RecipientLength R 2
bytes

UINT16
(dec)

Length of the subsequent recipient of the
message text in characters (bytes)
= “0x00” Not specified

D

-b • Recipient R Any Visible string
(text)

Message recipient D

Seg.N
-a

• Senderlength R 2
bytes

UINT16
(dec)

Length of the subsequent sender of the
message text in characters (bytes)
= “0x00” Not specified

D

-b • Sender R Any Visible string
(text)

Message sender D

Seg.
M
-a

• TextLength - Object 0x0018.10

D

-b • Text - Object 0x0018.11

D

E801 DiagHistory R Domain
variable
Record

Diagnostic archive
Diagnostic information of the device in short
form with history (the oldest information/lowest
fault number is transmitted first)
The structure is the same as that of 0x0018
DiagState

O

 • DiagState1 Oldest diagnostic state in short form D

 … … D

 • DiagStateN Newest diagnostic state in short form

D

E802 DiagHistoryLong R Domain
variable
Record

Diagnostic archive (long form)
Diagnostic information of the device in long
form with history (the oldest information/lowest
fault number is transmitted first)
The structure is the same as that of
DiagStateLong

O

 • DiagStateLong1 Oldest diagnostic state in long form D

 … D

 • DiagStateLongN Newest diagnostic state in long form D

54/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0019 ResetDiag R/W 1

byte
UINT8
(hex)

Acknowledge diagnostic message
Deletes the corresponding diagnostic memory
of the device and acknowledges the
diagnostic message(s).

O

 = “0x00” No restrictions for diagnostic messages or cancels existing (0x06,
0x07) restrictions

= “0x01” Deletes the diagnostic history. This value is only supported if the
0xE801 “DiagHistory” or 0xE802 “DiagHistoryLong” object exists.

= “0x02” Deletes (and acknowledges), where possible, all reported, and
pending, not yet reported DiagStates (errors), if they have been
remedied and are no longer active. This affects objects: 0x0018,
0x0033, 0x0034, 0xE800, 0xE806.

= “0x03” Deletes (and acknowledges) the entire diagnostics.
Combination of parameters “0x01” and “0x02”

= “0x04” Deletes (and acknowledges) all DiagStates already reported using
the information report, if several states have been reported.

= “0x05” Deletes (and acknowledges) only the most recent (pending)
reported DiagState.
This affects objects: 0x0018, 0x0033, 0x0034, 0xE800 and indirectly
object 0xE806.

= “0x06” Deletes (and acknowledges) all errors (similar to “0x02”), also if the
cause still exists; does not allow any new diagnostic messages.

= “0x07” Deletes (and acknowledges) everything and does not allow any new
diagnostic messages, not even in the history.
Combination of parameters “0x01” and “0x06”. As a result,
diagnostics are switched off.

Else: Reserved.

Following completion of the action, the contents are automatically reset to
0x00. Exception: 0x06 and 0x07. They remain set until another value is written.
In this way, it is possible to recognize that the diagnostic function is
deactivated.

If the fault cause is not removed, and if the fault also cannot be removed using
0x0019 “ResetDiag”, it cannot be deleted (acknowledged) either (exception:
data items 0x06 and 0x07).
In this case, a negative response with error type 0x08, 0x01, 0x0022
(error class 0x08, error code 0x01, additional code 0x0022 “Service cannot be
executed in the current device status. The error has not been not removed.”) is
to be sent.

If none or some of the objects affected by the corresponding parameters are
implemented, the service will, however, be acknowledged positively.

If acknowledgement is performed using object 0x0019 although there is no
pending diagnostic message, a positive response is to be sent.

001A

GetErrorRepMethod R/W 1
byte

Bit string 8
(hex)

Fault reporting method
Specifies the method used to report an fault to
the higher-level system. Setting of the
corresponding bit activates the method.

.

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

55/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Bit 0 Switches generation

of an information report using the contents of the “DiagState” object in
the event of an fault on (= “1”)/off (= “0”).

Bit 1 Switches generation
of an explicit peripheral fault status message using the contents of the
“DiagState” object in the event of an fault on (= “1”)/off (= “0”).

Bit 2 Switches generation
of a process data status message (any process data bit to be selected
by the manufacturer) using the contents of the “DiagState” object in the
event of an fault on (= “1”)/off (= “0”).

If several report methods are selected simultaneously, the diagnostic message
(and the subsequent diagnostic messages) must be stored in object 0x0018
until they have been read, even if one or more other diagnostic messages have
already been sent via the report mechanism.

0033 DiagStateChannelNo R 3 bytes Record
(2 elements)

This object must no longer be used. It has
been fully integrated in object 0x0018
“DiagState”.

Additional “channel number” information on
the current diagnostic status of the device

X

.01 • Lfd.Nr. R 2
byte

UINT16
(dec)

- Object 0x0018.1 X

.02 • ChannelNo R 1
byte

UINT8
(dec)

If the device has channels that are grouped
together, the affected channel of the
corresponding group can be entered here.

If “DiagState” is read, this object must be
maintained consistently at “DiagState” at least
for the next read access.

If “DiagState” is reported as an information
report, and this object is relevant for this
purpose, it is also reported via an information
report. Chronologically after DiagState.

X

0034 DiagStateAddValue R 6 bytes Record
(2 elements)

This object must no longer be used. It has
been fully integrated into object 0x0018
“DiagState”.

Additional information on the “additional value”
of the current diagnostic status of the device

X

.01 • Lfd.Nr. R 2
bytes

UINT16
(dec)

- Object 0x0018.1 X

.02 • AddValue R 4
bytes

UINT32
(hex)

A value associated with channel diagnostics
can be entered here, e.g., “current
temperature when exceeding the limit
temperature”.
Details: see PROFINET I&M profile

If “DiagState” is polled, this object must be
maintained consistently at “DiagState” at least
for the next read access.

If “DiagState” is reported as an information
report, and this object is relevant for this
purpose, it is also reported via an information
report. Chronologically after DiagState.

X

56/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

001B

TestMode R/W 2

bytes
UINT16

(hex)
Test mode
Switching to test mode using a manufacturer-
specific code. This also activates other test
parameters. Using value “0” returns to normal
operating mode.
= “0x0000” Normal operating mode
(default)

O

The depth of the diagnostic history, i.e., the number of entries in the diagnostic archives, can
be freely selected by the device developer based on the requirements and resources.

7.2.1.1 Timing of diagnostic messages

In most systems (higher-level networks, controllers, etc.), diagnostic messages are treated
with a lower priority than process data. To ensure that the diagnostic messages are able to
reach their addressees and the channels available for this are not overloaded, a diagnostic
message must be pending for a sufficiently long time before it is reported as outgoing.
For this reason, a time of one second has been determined as the time that must be
observed between an incoming and a outgoing message.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

57/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.2.1.2 Notification by reading the DiagState object

Available diagnostic information is reported (for example, via a group module fault input
(/StatErr) of the fieldbus slave protocol block) according to its priority. Several items of
diagnostic information may also be available at the same time. The master or a software tool
can retrieve the relevant information via the parameter channel.

Messages sent via the status bit (e.g., bit 7 in byte 0 of the process data channel) cannot be
processed generically and should therefore be avoided.

The current diagnostic information in DiagState(Long) remains until

• This information has been read at least once
and

• The cause for this diagnostic information does no longer exist

Or

• It is overwritten by a higher-priority message

Only then is next information of equal or lower priority made available (e.g., “Fault no. 2”).

The status bit(s) in the process data channel or module fault input remain(s) until

• Each item of diagnostic information has been read at least once
and

• No more diagnostic information is available.

Only then is the actual information (“Status OK”) made available.

7.2.1.3 Notification via message (info report) from the “DiagState” object

Alternatively, errors can be reported to the master using the “Information Report” service
(only once using the “DiagState” object) This function is enabled/disabled using the
“GetErrorRepMethod” object. When the “GetErrorRepMethod” function is activated, each
new item of diagnostic information (contents: object 0x0018) must be reported once
automatically to the master (without a request from the master).
In this case, the evaluation of the information report must be present on the fieldbus master
side, e.g., in the system, as a PLC function block, or HLL program.

his does not affect normal diagnostic handling of object 0x0018 “DiagState” (see above).
This means:

The current diagnostic information in DiagState(Long) remains until

• The cause for this diagnostic information does no longer exist
Or
• It is overwritten by a higher-priority message

Only then is next information of equal or lower priority made available (e.g., “Fault no. 2”).

The status bit(s) in the process data channel or module fault input remain(s) until

• No more fault information is available
Only then is the actual information (“Status OK”) made available.

58/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.2.1.4 Classification of faults (priority of messages)

The term “fault” refers to all device application states that deviate from the normal state of the
device. The importance of this state for the application is indicated by the priority.

Prio 1 (red) Fault (alarm)

Meaning: A fault is present that must be responded to.
It is necessary for the user to take action. A fault will not disappear without
the user being involved.
Example: An fault leads to an activity in the drive, but does not necessarily
require the system to be stopped with immediate effect.

Prio 2 (yellow) Warning

Meaning: Risk of an fault
A warning does not require action to be taken in the device.
It is not necessary for the user to take action. A warning will disappear
without the user being involved.
Example: Limit value not reached or exceeded

Prio 83 (green) Information, message, notification (only exists as an outgoing message)

Example: General operating message, 10,000 operating hours have
elapsed

Prio 81, 82 Removed

Meaning: The fault reported with the same number has been removed.

Messages and information are defined by the user. Warnings and faults can be predefined or
defined by the user.

An outgoing message (diagnostic state) overwrites the corresponding incoming message
(diagnostic state), if this has not yet been retrieved by the master. This reduces the volume
of communication traffic without losing any information.
This results in the following sequence of priorities:

Coding Priority Meaning
0x81 – highest priority Prio 1 (red) outgoing Fault (alarm) removed
0x01 Prio 1 (red)

 incoming
Fault (alarm)

0x82 Prio 2 (yellow)
 outgoing

Warning removed

0x02 Prio 2 (yellow)
 incoming

Warning

0x83 – lowest priority Prio 3 (green) Information, message
0x00 - No fault/warning/information present

If the device is in the “fault” state, parameter 0x0018.2 “DiagState.Priority” contains a value
that is not equal to “0”.
If the device is not in the “fault” state, this parameter contains the “fault gone” (0x8X) value or
“0” (if all gone errors have been reported and there are no more errors present).

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

59/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.2.1.5 Fault codes

The aim of standardizing the fault codes is to provide the user with quick and easy guide for
remedying problems without requiring detailed knowledge of the device. A device-specific
instruction for the user should be included in the diagnostic text of the fault code. There may
also be several diagnostic texts (0x0018.6) for an fault code.

The fault code is represented as an octet string with the length of 2 bytes. It is coded
hierarchically, beginning with a rough distinction that is gradually refined.

Bit Grouping
15 ... 12 Main groups
11 ... 8 Subgroups
7 ... 0 Details

An fault code must also be interpreted accordingly (three parts).
E.g.,: 0x5112:
Faults in the device hardware (only inside the device housing), faults in the power inside and
through the device, power supply: here +24 V

If the device is in the “fault” state, parameter 0x0018.4 “DiagState.Code” contains a value
that is not equal to “0”.
If the device is not in the “fault” state, the parameter contains an fault code with value
“outgoing” (0x8X) or “0” (if all gone errors have been reported and there are no more errors
present).

60/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.2.1.5.1 Main groups and subgroups

Code (hex) Meaning

0000 No fault
1000 General fault
2000 Current (flow too high)

2100 Fault affecting the supply of the device or “device input side” signals
2200 Fault affecting internal power supply units or “device-internal” signals
2300 Fault in the power supply or signals for the I/O devices connected to the device (device output
side)

3000 Voltage
3100 Fault affecting the supply voltage of the device or “device input side” signals
3200 Fault affecting internal power supply units or “internal device” signals
3300 Fault on signals for the I/O devices connected to the device (device output side)
3400 Fault in the supply voltage for the I/O devices

4000 Temperature - not within the permissible range
4100 Ambient temperature not OK
4200 Temperature in the device not OK
4300 Temperature of an external peripheral device (e.g., drive) not OK
4400 Temperature of supply unit not OK

5000 Device hardware fault (only inside device housing)
5100 Fault in the supply inside and through the device
5200 Fault in the device application
5300 Fault of the operator interface and display unit on the device
5400 Fault in the power section of the device
5500 Fault in communication with the integrated additional assembly
5600 Fault in the internal data memory

6000 Device software fault
6100 Internal software fault (firmware)
6200 Fault in the user software on the device
6300 User parameter (data record) not OK
6800 Device configuration not OK

7000 Fault on additional assembly/assemblies
7100 Fault in the power section
7200 Fault in measuring circuit
7300 Fault in the sensor (as a component connected permanently to the device)
7400 Fault in the calculation circuit
7500 Fault in communication with additional assembly
7600 Fault in external data memory
7700 Open circuit/cable fault

8000 Monitoring of device function
8100 Fault in field communication
8200 Fault in closed-loop control
8300 Torque controller fault
8400 Speed controller fault
8500 Position controller fault
8600 Positioning controller fault
8700 Synchro controller fault
8800 Winding controller fault
8900 Fault on external sensor (separate device)
8A00 Fault in external actuator
8B00 Preventive maintenance required (condition monitoring)
8F00 Safety fault

9000 Faults on external devices
A000 Fault on a modular device - subsystem
BXXX Reserved
F000 Fault in additional functions

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

61/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.2.1.5.2 Main groups with subgroups and details

Code (hex) Meaning

0000 No fault
1000 General fault
 Please refer to the manual or contact the manufacturer's support team.
2000 Current (flow too high)
2100 Fault affecting the supply of the device or “device input side” signals
2110 Short circuit/ground fault on device supply voltage - general
2120 Ground fault on device supply voltage - general
2121 Ground fault, phase L1 for 3-phase connection
2122 Ground fault, phase L2 for 3-phase connection
2123 Ground fault, phase L3 for 3-phase connection
2126 VCC ground fault (supply voltage, 24 V, typical)
2127 GND ground fault
2130 Short circuit on device supply voltage – general (e.g., 24 V and GND)
2131 Short circuit, phases L1-L2 for 3-phase connection
2132 Short circuit, phases L2-L3 for 3-phase connection
2133 Short circuit, phases L3-L1 for 3-phase connection
2140 Short circuit/cross-circuit on the I/O devices
2141 Cross-circuit between signal outputs and/or other voltages
2142 Cross-circuit between a signal output and a clock signal
2146 Short circuit (cross-circuit) of a signal input to VCC
2147 Short circuit (cross-circuit) of a signal input to GND
2150 Open signal lines (input signal not connected)
2160 Signal line break/cable break (input signal)
2180 Input is not activated (not switching)
2181 Input circuit (e.g,. load) faulty
2200 Fault affecting internal power supply units or “device-internal” signals
2213 Overcurrent during startup
2214 Overcurrent during operation
2220 Continuous overcurrent from an internal voltage source
2221 Continuous overcurrent no. 1
2222 Continuous overcurrent no. 2
2230 Short circuit/ground fault of an internal voltage source
2240 Ground fault
2250 Short circuit

2300 Fault in the power supply or signals for the I/O devices connected to the device (device
output side)
2310 Continuous overcurrent on peripheral supply - general
2311 Continuous current of source no. 1
2312 Continuous overcurrent of source no. 2
2320 Short circuit/ground fault in peripheral supply - general
2330 Ground fault in peripheral supply voltage
2331 Ground fault, phase U for 3-phase connection
2332 Ground fault, phase V for 3-phase connection
2333 Ground fault, phase W for 3-phase connection
2326 Ground fault, VCC (supply voltage, 24 V, typical)
2327 Ground fault, GND
2340 Short circuit/overload on the I/O devices
2341 Short circuit, phases U-V for 3-phase connection
2342 Short circuit, phases V-W for 3-phase connection
2343 Short circuit, phases W-U for 3-phase connection
2344 Overload of a signal output
2345 Overload of initiator supply
2346 Short circuit (cross-circuit) of a signal output to VCC
2347 Short circuit (cross-circuit) of a signal output to GND
2350 Continuously open signal lines (output)
2360 Signal line break/cable break (output signal)
2370 Cross-circuit
2371 Cross-circuit between signal outputs and/or other voltages
2372 Cross-circuit between a signal output and a clock signal
2380 Output is not activated (not switching)
2381 Signal output circuit (e.g., load) faulty

62/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

3000 Voltage
3100 Fault affecting the supply voltage of the device or “device input side” signals
3110 Supply overvoltage
3111 Mains overvoltage, phase L1
3112 Mains overvoltage, phase L2
3113 Mains overvoltage, phase L3
3120 Supply undervoltage
3121 Mains undervoltage, phase L1
3122 Mains undervoltage, phase L2
3123 Mains undervoltage, phase L3
3130 Supply voltage failure
3131 Phase failure L1
3132 Phase failure L2
3133 Phase failure L3
3134 Phase sequence not OK
3140 Supply voltage frequency not OK
3141 Frequency too high
3142 Frequency too low
3150 Polarity of supply voltage reversed
3180 Fault affecting the signal input – general
3181 Open signal line (input)
3182 Signal line break/cable break (input signal)
3183 Unexpected signal change at signal input
3184 Surge voltage at signal input (voltage greater than the permissible range)
3185 Signal voltage in non-defined area
3186 Undervoltage at signal input (voltage lower than the permissible range)
3200 Fault affecting internal power supply units or “internal device” signals
3210 Surge voltage, device-internal
3211 Surge voltage no. 1
3212 Surge voltage no. 2
3220 Undervoltage, device-internal
3221 Undervoltage no. 1
3222 Undervoltage no. 2
3230 Charging fault
3300 Fault on signals for the I/O devices connected to the device (device output side)
3310 Output overvoltage
3311 Output overvoltage, phase U
3312 Output overvoltage, phase V
3313 Output overvoltage, phase W
3320 Armature circuit
3321 Armature circuit interrupted
3330 Field circuit
3331 Field circuit interrupted
3340 Output undervoltage
3400 Fault in the supply voltage for the I/O devices
3401 Supply voltage for the I/O devices - surge voltage
3402 Supply voltage for the I/O devices – missing
3403 Supply voltage for the I/O devices - undervoltage
3410 Fault in the initiator supply - general
3411 Initiator supply - undervoltage
3412 Initiator supply missing
3413 Initiator supply - surge voltage
3420 Fault in the actuator supply - general
3421 Actuator supply - undervoltage
3422 Actuator supply missing
3423 Actuator supply - surge voltage
4000 Temperature - not within the permissible range
4100 Ambient temperature not OK
4110 Ambient overtemperature
4120 Ambient undertemperature
4130 Intake air temperature
4140 Exhaust air temperature
4200 Temperature in the device not OK
4210 Overtemperature in the device
4220 Undertemperature in the device
4300 Temperature of an external peripheral device (e.g., drive) not OK
4310 Overtemperature in the external peripheral device (e.g., drive)
4320 Undertemperature in external peripheral device (e.g., drive)
4400 Temperature of supply unit not OK

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

63/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

4410 Overtemperature of supply unit
4420 Undertemperature of supply unit
5000 Device hardware fault (only inside device housing)
5010 Component fault
5100 Fault in the supply inside and through the device
5110 Fault in low-voltage power supply units - general
5111 Supply +/-15 V
5112 Supply +24 V
5113 Supply +5 V
5114 Supply +3.3 V
5115 Supply +2.5 V
5116 Supply +1.2 V
5118 U8 = Manufacturer-specific
.... manufacturer-specific for U8 to U15
511F U15 = Manufacturer-specific
5120 Fault in the air supply
5130 Fault in the paint supply
5140 Fault in the supply of the intermediate circuit
5150 Fault in the supply (power supply unit) of the initiator
5151 Internal short circuit
5160 Fault in the supply (power supply unit) of the I/O devices supplied by the device.
5200 Fault in the device application
5210 Measuring circuit faulty
5220 Calculation circuits faulty
5230 Communication (device-internal only) faulty
5300 Fault of the operator interface and display unit on the device
5400 Fault in the power section of the device
5410 Output stage faulty
5420 Chopper faulty
5430 Input stages faulty
5440 Contactors/relays faulty
5441 Channel 1
… …
5448 Channel 8
5450 Fuses defective
5451 S1 = L1
5452 S2 = L2
5453 S3 = L3
5454 S4 = Manufacturer-specific
.... for S5, S6, S7, S8
5459 S9 = Manufacturer-specific
5500 Fault in communication with the integrated additional assembly
5510 Interface no. 1
5520 Interface no. 2
5600 Fault in the internal data memory
5610 Permanently installed RAM faulty
5620 Permanently installed EPROM faulty
5630 Permanently installed EEPROM faulty
5640 Permanently installed flash faulty
6000 Device software fault
6010 Software reset (watchdog) occurred
6100 Internal software fault (firmware)
6110 Firmware missing (e.g., SD card missing)
6120 Firmware inconsistent (e.g., SD card contains corrupt data)
6130 Application on the device not yet ready (part of application still booting, self-tests being performed,

etc.)
6200 Fault in the user software on the device
6210 Process data index not available
6211 Variable number not available
6300 User parameter (data record) not OK
6301 Data record no. 1
.. from 2 to 14 accordingly
630F Data record no. 15
6310 Loss of internally stored user parameters
6320 Inconsistency between internally stored user parameters (e.g., identified by CRC)
6330 User parameters/startup parameters not yet initialized
6340 Interdependent user parameters/startup parameters are not consistent with one another
6800 Device configuration not OK
6810 Data in the process data configuration has been mapped twice

64/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7000 Fault on additional assembly/assemblies
 Permanently connected to the device, can be applied by the user, if necessary, part of complete

device, usually delivered with device
7100 Fault in the power section
7110 Brake chopper defective
7111 Brake chopper failure
7112 Brake chopper overcurrent
7113 Brake chopper circuit
7120 Motor defective
7121 Motor blocked
7122 Motor missing or commutation faulty
7123 Motor tilted
7140 Replaceable relay/contactor (by the user) faulty
7150 Replaceable fuse (by the user) faulty
7200 Fault in measuring circuit
7300 Fault in the sensor (as a component connected permanently to the device)
7301 Tachometer faulty
7302 Tachometer polarity reversal
7303 Resolver 1 faulty
7304 Resolver 2 faulty
7305 Incremental encoder 1 faulty
7306 Incremental encoder 2 faulty
7307 Incremental encoder 3 faulty
7308 Sensor 8 faulty
… Sensor 9 to 14 accordingly
730F Sensor 15 faulty
7310 Speed sensor faulty
7320 Position sensor faulty
7400 Fault in the calculation circuit
7500 Fault in communication with additional assembly
7501 Short circuit in the data signal line
7502 Line break in data signal line
7503 Fault in data signal transmission (e.g., due to EMC)
7510 Serial interface no. 1 faulty
7520 Serial interface no. 2 faulty
7600 Fault in external data memory
7610 Replaceable RAM faulty
7620 Replaceable EPROM faulty
7630 Replaceable EEPROM faulty
7640 Replaceable flash faulty
7700 Open circuit/cable fault
7701 Cable 1 faulty
… Cable 2 to 14 accordingly
770F Cable 15 faulty
7710 Open circuit, sensor cable
8000 Monitoring of device function
8100 Fault in field communication
8110 Process data update timeout elapsed
8120 Host data update timeout elapsed
8121 PD channel handshake timeout elapsed
8150 Buffer handling faulty
8151 Send buffer, general
8152 Send buffer full
8153 Send buffer overflow
8159 Receive buffer, general
815A Receive buffer full
815B Receive buffer overflow
8200 Fault in closed-loop control
8210 System deviation, desired < actual. Deviation present longer than a specified period of time

(manufacturer-specific)
8211 Maximum manipulated variable reached/exceeded
8220 System deviation, desired < actual. Deviation present longer than a specified period of time

(manufacturer-specific)
8221 Minimum manipulated variable reached
... Reserved for profile-specific system errors
827f Reserved for profile-specific system errors
8300 Torque controller fault
8311 Excess torque
8312 High-inertia starting

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

65/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

8313 Static torque
8321 Insufficient torque
8331 Torque break
8400 Speed controller fault
8500 Position controller fault
8600 Positioning controller fault
8611 Following fault
8612 Reference limit exceeded
8700 Synchro controller fault
8800 Winding controller fault
8900 Fault on external sensor (separate device)
8910 Measuring value overrange
8920 Measuring value underrange
8930 Additional circuit for external sensor faulty
8A00 Fault in external actuator
8B00 Preventive maintenance required (condition monitoring)
8F00 Safety fault
8F01 Symmetry violation (switching sequence incorrect, discrepancy time monitoring, antivalent,

equivalent)
8F08 Light test fault (output cannot be switched on when inactive)
8F09 Dark test fault (output cannot be switched off when active)
8F0F Failure state (critical fault, safety not guaranteed, the module is shut down)
9000 Faults on external devices
A000 Fault on a modular device - subsystem
A001 No module present/module missing
A002 Incorrect module present
A003 Replaced (the expected module was replaced with a compatible module)
A004 More modules in the subbus than expected
A010 General fault in the module
A012 Application on the module not ready
A013 Module has executed a reset
A014 Module parametrization missing or faulty
A020 Subbus communication fault
A021 Subbus fault - timeout
A022 Multiple transmission errors on the subbus
A023 Subbus I/O data communication data
A024 Subbus management data communication fault
A025 Ring fault – the “open ring” bus structure is interrupted
A030 Subbus configuration fault
A031 I/O data configuration mapped twice
A033 The real process data length does not match the configured process data length.
 (is longer)
A040 Common errors
A041 Hardware fault – module must be replaced
A042 Firmware fault – module firmware or the entire module must be replaced
A043 Subbus asynchronous to higher-level system
BXXX Reserved
F000 Fault in additional functions
F001 Delay
F002 Subsynchronous operation
F003 Lifting system
F004 Control

Codes that are not listed are reserved.
NOTE: additional fault codes are defined in the profiles.

If a manufacturer cannot assign an fault to any of the above codes, the INTERBUS Club
should be notified.

66/126 7 Standard objects
7.2 Device diagnostics

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.2.2 Trace data

Traces are consecutive records of specific device data. They can be used, for example, to
recapitulate sequences in order to detect errors or problems, or to archive data.
Basically, there may be very different traces. Contents, structure, scope, and handling are
determined by the device manufacturer.

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O

001C ControlTrace R/W 1
byte

UINT8
(hex)

Logging control
Controls. a recording process
“0x00” Resets the recording and the
 corresponding parameters
“0x01” Starts a recording
“0x02” Stops a recording
Additional details are specified by the
manufacturer

O

E803 TraceBuffer R N
bytes

Domain
variable

octet string
(hex)

Logging buffer
Contains the recorded trace data.
The structure is specified by the manufacturer

D

Trace data is generally transmitted using the upload system. When uploading trace data, the
basic information should be contained in the header.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.2 Device diagnostics

67/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.3 User data management

7.3.1 Process data management

This section defines the behavior of process data. This includes the behavior in the event of
a timeout and fieldbus reset as well as reading and writing process data via the parameter
channel.

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O

001F

PDTimeout R/W 2
bytes

UINT16
(dec)

Process data monitoring time
Maximum permissible time in ms (e.g.,
100 ms) by which new data must have been
transmitted via the process data channel.
The action that is then triggered is specified
in object 0x0020 “PDTimeoutCode”.
0xFFFF = Disabled

O

0020

PDTimeoutCode R/W N x 2
bytes

Array of
UINT16

(hex)

Process data monitoring code
If the process data monitoring time elapses,
the function assigned to the “process data
monitoring code” is carried out by the device.

O

This type of function can be, for example, the defined shutdown of a drive or
the continuous transmission of fault telegrams via a serial interface.

0x0000 “0” is output to all output bits
0x0001 “1” is output to all output bits
0x0002 Hold the last valid value
0x0003 Accept the substitute value from object 0x002F “PDOUT_Subst”
0x0004 Output the minimum permissible value
0x0005 Output the maximum permissible value
0x0010 Only in the case of subbuses: apply the subbus-specific behavior

0x0006 ... 00x0009 and 0x0011 ... 0x7FFF Reserved
0x8000 up to
0xFFFF Manufacturer-specific

Since different behavior may be required for each channel/each group, this
parameter is set up as an array The number of array elements is defined by
the number of elements of the corresponding PDOUT (0x0026) / (PDIN
0x0025) object.

N= Number of elements
If only one entry is supported (written) although the device has several
elements (channels/groups), the parameter is valid for the entire device.

0024

ResetCode R/W N x 2
bytes

Array of
UINT16

(hex)

Fieldbus reset code
Substitute value behavior during bus reset
(PDOUT)
Substitute value behavior when valid process
data is missing

O

68/126 7 Standard objects
7.3 User data management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

 In the event of a bus reset, the function assigned to the “ResetCode” is carried
out by the device.

This type of function can be, for example, the defined shutdown of a drive or
the continuous transmission of fault telegrams via a serial interface.

0x0000 “0” is output to all output bits
0x0001 “1” is output to all output bits
0x0002 Hold the last valid value
0x0003 Accept the substitute value from object 0x002F “PDOUT_Subst”
0x0004 Output the minimum permissible value
0x0005 Output the maximum permissible value
0x0010 Only in the case of subbuses: apply the subbus-specific behavior

0x0006 ... 00x0009 and 0x0011 ... 0x7FFF Reserved
0x8000 up to
0xFFFF Manufacturer-specific

Since different behavior may be required for each channel/each group, this
parameter is set up as an array The number of array elements is defined by
the number of elements of the corresponding PDOUT (0x0026) / (PDIN
0x0025) object.

N= Number of elements
If only one entry is supported (written) although the device has several
elements (channels/groups), the parameter is valid for the entire device.

See also “Substitute value behavior/switch-on behavior” section

0030

PF_Code R/W N x 2
bytes

Array of
UINT16

(hex)

Peripheral fail code
Substitute value behavior during peripheral
faults (PDIN)
In the event of an fault on the I/O devices of
the fieldbus protocol chip, which prevents the
processing of input process data, the function
specified here is carried out by the device.

O

 This type of function can be displayed, for example, via the /StatErr input or µP
WD on the protocol chip.

0x0000 “0” is output to all input bits
0x0001 “1” is output to all input bits
0x0002 Hold the last valid value
0x0003 Accept the substitute value from object 0x0031 “PDIN_Subst”
0x0004 Output the minimum permissible value
0x0005 Output the maximum permissible value
0x0010 Only in the case of subbuses: apply the subbus-specific behavior

0x0006 ... 00x0009 and 0x0011 ... 0x7FFF Reserved
0x8000 up to
0xFFFF Manufacturer-specific

Since different behavior may be required for each channel/each group, this
parameter is set up as an array The number of array elements is defined by
the number of elements of the corresponding PDOUT (0x0026) / (PDIN
0x0025) object.

N= Number of elements
If only one entry is supported (written) although the device has several
elements (channels/groups), the parameter is valid for the entire device.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.3 User data management

69/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

0025

PDIN R PD
length

Octet string[N] IN process data
Input process data
Mapping of the IN process data (from the
device to the master) to an object
The PD bytes, like the bytes in the octet
string, are counted in ascending order
starting at the (top) left with 0.

If the process data is structured (e.g., several
channels), this object should also be
structured and individual structure elements
accessed via the subindex.

M

.01 • Part 1 R Dependent First part of the process data item, e.g., value
of the first channel or the first function group

O

.02 • Part 2 R Dependent Second part of the process data item, e.g.,
value of the second channel or the second
function group

O

... •
.N • Part N R Dependent Nth part of the process data item, e.g., value

of the Nth channel or the Nth function group
O

0026

PDOUT R/WD PD
length

Octet string[N] OUT process data
Output process data
Mapping of the OUT process data (from the
master to the device) to a parameter object.

M

 Data should be accessed that maps the peripheral states as accurately as
possible. This also applies to the substitute values.
The PD bytes, like the bytes in the octet string, are counted in ascending order
starting at the (top) left with 0.

If the process data is structured (e.g., several channels), this object should
also be structured and individual structure elements accessed via the
subindex.
In any case, data consistency of a value (e.g., all bytes of a 32-bit analog
value) must be ensured.

If the “GetExRight” object is not implemented, the status of the PDOUT object
is “Read-only”.
If the “GetExRight” object is implemented, the status of the PDOUT object is
“Read and write”.
If the value for the “GetExRight” object = “0”, write access to the PDOUT object
is rejected with
 Error class “8” - Other
 Error code “1” – Profile specific
 Additional code 0x0022
“Service cannot be executed in current device state.”

NOTE:
If access to OUT process data, for example, is possible using tools, it should
be noted that potential process data watchdog functions may not work here.

.01 • Part 1 R Dependent First part of the process data item, e.g., value
of the first channel or the first function group

O

.02 • Part 2 R Dependent Second part of the process data item, e.g.,
value of the second channel or the second
function group

O

... •
.N • Part N R Dependent Nth part of the process data item, e.g., value

of the Nth channel or the Nth function group
O

70/126 7 Standard objects
7.3 User data management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

002F PDOUT_Subst R/W PD
length

Dependent OUT process data substitute
Substitute value for OUT process data
Substitute value for the OUT process data
(from the master to the device) in the event of
fault.
The PD bytes, like the bytes in the octet
string, are counted in ascending order
starting at the (top) left with 0.

Dependency info:
Must be implemented if the value 0x0003 is
permitted for object 0x0020
“PDTimeoutCode” or object 0x0024
“ResetCode”.
See relevant section

D

0031 PDIN_Subst R/W PD
length

Dependent IN process data substitute
Substitute value for IN process data
Substitute value for the IN process data (from
the device to the master) in the event of an
fault in the connected I/O devices.
The PD bytes, like the bytes in the octet
string, are counted in ascending order
starting at the (top) left with 0.

Dependency info:
Must be implemented if the value 0x0003 is
permitted for object 0x0030 “PF_Code”.
See relevant section

D

0027 GetExRight R/W 1
byte

UINT8
(hex)

Get exclusive process data write rights
Request exclusive write access
This parameter can be used to request
exclusive write access to the process outputs
via the parameter channel. Following a
positive confirmation, the data is no longer
updated via the process data channel. A
change to the process outputs are made via
the “PDOUT” object, which can now be read
from and written to.
The exclusive rights are reset each time a
connection is aborted or the bus is reset.

Note: This action may have serious
consequences for the connected process.
This is why this object should be password-
protected.

= “0x00” Output data via the PD channel
= “0x01” Output data via the
 parameter channel
Else: Reserved

NOTE:
If access to OUT process data, for example,
is possible using tools, it should be noted that
potential process data watchdog functions
may not work here.

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.3 User data management

71/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

0028

ChangePDSet R/W 2
bytes

UINT16
(dec)

Change process data settings
Set process data assignment
Selects one of the possible process data
assignments defined by the manufacturer
and activates it.

0x0000 Default
0x0001 to 0x7FFF Reserved
0x8000 to 0xFFFF Manufacturer-
specific

The change to the process data assignments
usually also the contextual significance and
structure of the process data might require a
new assignment of the process data.

If, as a result, the data length, device type
and/or length code change, these changes
can only come into effect with the next bus
reset or if explicitly instigated by the bus
master.

O

003B PDIN_Descr R N x 12
bytes

Array of
records
(N x 3

elements)

Process data description
IN process data description
Description of the process data structure.
This enables tools and systems to
automatically assign the process data the
correct variables, to take into account the
endianness or to assign it to a suitable
connection.
All types can occur any number of times.
The description must be continuous and
arranged in ascending order, starting on the
left.

The number of array elements is defined by
the number of elements of the PDIN (0x0025)
object.
N = Number of elements PDIN (0x0025)

M

72/126 7 Standard objects
7.3 User data management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

.01 • Type R 8
bytes

Octet string[8]
(text)

Type of I/O data item. The following are
currently defined:

Management data types:
• “ACK” - Response to command
• “DIAG” - Diagnostic information
• “NC” - Not connected, not in use
• “STATUS” - Status information

User data types:
• “AI” - Analog IN
• “AO_F” - Analog OUT - feedback
• “CmpP” - Complex protocol
• “CNT” - Counter
• “DI” - Digital IN
• “DO_F” - Digital OUT - feedback
• “DRV” - Drive
• “MotSt” - Motor starter
• “NO” - Number
• “PLC” - PLC (data of an

 intelligent module)
• “POS” - Positioning data
• “PWM” - PWM data
• “SFCH” - Channel for safe data
• “SubMa” - Subbus master
• “SubSl” - Subbus slaves container

Preceding “S_” (e.g., “S_DO_F”) indicates a
safety data type.

The type is exactly 8 characters long. Unused
characters are to be filled with 0x00.

Example:
“AI” - 0x41 49 00 00 00 00 00 00

M

.02 • ChNo R 2 bytes UINT16
(dec)

Channel number
Number of channels of a type
Note:
A channel always refers to a number of bits
(even when there is only one) which
collectively have a meaning.
Example:
Four analog inputs represent four channels
or 16 digital inputs represent 16 channels

M

.03 • ChLength R 2 bytes UINT16
(dec)

Channel length
Length of a channel in bits

M

003C PDOUT_Descr R N x 12
bytes

Array of
records
(N x 3

elements)

Process data description
OUT process data description
Description of the process data structure
This enables tools and systems to
automatically assign the process data the
correct variables, to take into account the
endianness or to assign it to a suitable
connection.
All types can occur any number of times.
The description must be continuous and
arranged in ascending order, starting on the
left.

The number of array elements is defined by
the number of elements of the PDOUT
(0x0026) object.
N = Number of elements PDOUT (0x0026)

M

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.3 User data management

73/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.01 • Type R 8
bytes

Octet string[8]
(text)

Type of I/O data item. The following are
currently defined:

Management data types:
• “CMD” - Commands
• “CTRL” - Control
• “NC” - Not connected, not in use

User data types:
• “AO” - Analog OUT
• “CmpP” - Complex protocol
• “CNT” - Counter
• “DO” - Digital OUT
• “DRV” - Drive
• “MotSt” - Motor starter
• “NO” - Number
• “PLC” - PLC (data of an

 intelligent module)
• “POS” - Positioning data
• “PWM” - PWM data
• “SFCH” - Channel for safe data
• “SubMa” - Subbus master
• “SubSl” - Subbus slaves container

The type is exactly 8 characters long. Unused
characters are to be filled with 0x00.
Example:
“CNT”- 0x43 4E 54 00 00 00 00 00

M

.02 • ChNo R 2 bytes UINT16
(dec)

Channel number
Number of channels of a type
Note:
A channel always refers to a number of bits
(even when there is only one) which
collectively have a meaning.
Example:
Four analog inputs represent four channels
or
16 digital inputs represent 16 channels

M

.03 • ChLength R 2 bytes UINT16
(dec)

Channel length
Length of a channel in bits

M

Example of a four-channel analog OUT module:
Content of 0x003B “PDIN_Descr”, 2 entries (hex):
53 54 41 54 55 53 00 00 00 10 00 01
4E 43 00 00 00 00 00 00 00 08 00 08

Content of 0x003C “PDOUT_Descr”, 2 entries (hex):
4E 43 00 00 00 00 00 00 00 02 00 08
41 4F 00 00 00 00 00 00 00 04 00 10

74/126 7 Standard objects
7.3 User data management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.3.2 Substitute value behavior/power-on behavior

A distinction is made between:

7.3.2.1 Power-on behavior:

Following power-on of the power supply, the inputs/outputs must adopt a safe (defined)
state within the meaning of the Machinery Directive (inactive, “0”, typical).
Following power-on, this state must be maintained until

• The device has valid parametrization that uses the inputs/outputs (not deactivated)
• And

o Valid output data has been received
Or

o Valid input data can be provided

Where possible, this involves extending the “PowerOff” state.
Unused (deactivated) inputs/outputs do not exit power-on behavior. If they have been active
before, the inputs/outputs change to power-on behavior.

Note: Following the start, it is not mandatory to write a parameter in order to change to this
state if there is already a channel being actively used in the locally stored parametrization.

7.3.2.2 Substitute value behavior (failsafe behavior):

In the event of the absence of valid output data*) the device must change to the “Substitute
value behavior” state with regard to its outputs, if

• A parametrization exists for which the outputs are used (are activated)
And
• Valid process data has been exchanged at least once before

For the OUT process data, the substitute value behavior is maintained until valid OUT
process data is received.

If no valid input data can be made available, the device must change to the “Substitute
value behavior” state, with regard to its inputs, if

• A parametrization exists for which the inputs are used (are active)

Only inputs/outputs used adopt the substitute value behavior. Inputs/outputs not used do not
exit power-on behavior.

Note: Following the start, it is not mandatory to write a parameter in order to achieve this
state if there is already a channel being actively used within the locally stored
parametrization.

*) The system determines in which way “absence of valid output data” is defined. Usually, it
is defined by expiry of a timeout (reset), receipt of a corresponding command, or expiry of the
validity of a process data determiner.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.3 User data management

75/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.3.4 Functional safety – safety

Entry in object 0x0005 “Capabilities”: “Safety0”

The basic profile does not describe methods or protocols that ensure secure data
transmission in the sense of functional safety.
The support for safety devices is limited to ensure that they can be identified in the system.
Objects and entries are defined at the appropriate positions to enable the master to
recognize

• That it is a device from the “Safety” device range (DeviceFamily, index 0x0004)
• Where the safety-relevant data can be found in the process data channel

(PDIN_Descr, index 0x003B, and PDOUT_Descr, index 0x003C)
• That safe I/O data can be read by the standard system too

(PDIN, index 0x0025, and PDOUT, index 0x0026)
• Which errors are relevant to safety (fault code 0x8FXX)
• Which safety protocols are supported (SafetyProtType Index 0x0047.1)
• Etc.

76/126 7 Standard objects
7.3 User data management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

https://www.phoenixcontact.com/online/portal/de?1dmy&urile=wcm%3apath%3a/dede/web/main/products/subcategory_pages/Safe_I_Os_P-05-03/532e1ff3-b975-4e53-8419-a7dd8ba39d29/532e1ff3-b975-4e53-8419-a7dd8ba39d29

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.3.5 Parameter channel management

This section specifies the performance of the parameter channel in the case of timeout and
communication abort.

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O

0021

PChTimeout
V. Lutz

R/W 2
bytes

UINT16
(dec)

Parameter channel monitoring time
Maximum permissible time in ms (e.g., 500 ms)
by which new data must have been transmitted
via the parameter channel/the service must have
been completed. This applies equally to both
read and write operations.

The action that is then triggered at the slave is
specified in object 0x0022 “PChTimeoutCode”.

The master can cancel the request, if it has not
received confirmation of its request within this
time, and report a PCh timeout to the higher-
level system.
Exception: “Busy”

Default: 500 ms
0xFFFF = Disabled

The slave must reject any times that it is not able
to realize.

M

0022

PChTimeoutCode R/W 2
bytes

UINT16
(hex)

Parameter channel monitoring code
If the communication monitoring time elapses,
the function assigned to the parameter channel
monitoring code is carried out.

This type of function can be, for example, the
defined shutdown of a drive or the continuous
transmission of fault telegrams via a serial
interface.

0x0000 No action (default)
0x0001 Repetition of the service
(expect)
0x0002 Expect abort of the service
0x0003 Perform active abort of the
service

0x0004 to 0x7FFF Reserved
0x8000 to 0xFFFF Manufacturer-specific

O

0023

AbortCode

R/W 2
bytes

UINT16
(hex)

Connection abort code
If a connection is aborted on the parameter
channel, the function that is assigned to the
connection abort code is carried out.

This type of function can be, for example, the
defined shutdown of a drive or the continuous
transmission of fault telegrams via a serial
interface.

0x0000 No action (default)
0x0001 to 0x7FFF Reserved
0x8000 to 0xFFFF Manufacturer-specific

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.3 User data management

77/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4 Device management

Field devices use increasingly complex functions, which must be suitably parameterized by
the application or software tools. The following establishes a basic structure that enables the
usual principal handling procedures to be standardized.

Dependency info:
If object 0x0029 “ParamSetWriteControl” is implemented, object 0x002A “ConflictDictionary”
must also be implemented.

Index
(hex) Object name R/W Lengt

h
Data type

(representati
on)

Meaning M/O

0029

ParamSetWriteControl R/W 1
byte

UINT8
(hex)

Block parameterization control
See “Interdependent parameters” section
below

O

002A

ConflictDictionary R N x 8
bytes

Array of
records
N x 6

elements

Conflict dictionary
Result of block parameterization
See “Interdependent parameters” section
below

D

First interdependent parameter in conflict with at least one other parameter.

.01 • ConfGrNo_1 R 1
byte

UINT8
(dec)

Conflict group number
of the first dependent parameter
This number allows the following parameter to
be assigned to one of several groups of
parameters that are in conflict with one
another.

D

.02 • Subslot_1 R 1
byte

UINT8
(dec)

Subslot of the first dependent parameter D

.03 • Index_1 R 2
bytes

UINT16
(hex)

Index of the first dependent parameter D

.04 • Subindex_1 R 1
byte

UINT8
(hex)

Subindex of the first dependent parameter D

.05 • Element_1 R 1
byte

UINT8
(hex)

Element in the record of the first dependent
parameter

D

.06 • Add. Code_1 R 2
bytes

UINT16
(hex)

Add. information on the first dependent
parameter

D

 • …

Nth interdependent parameter that is in conflict with at least one other parameter.

.6xN-
5

• ConfGrNo_N R 1
byte

UINT8
(dec)

Conflict group number
of the Nth dependent parameter

D

.6xN-
4

• Subslot_N R 1
byte

UINT8
(dec)

Subslot of the Nth dependent parameter D

.
6xN-

3

• Index_N R 2
bytes

UINT16
(hex)

Index of the Nth dependent parameter D

.
6xN-

2

• Subindex_N R 1
byte

UINT8
(hex)

Subindex of the Nth dependent parameter D

.
6xN-

1

• Element_N R 1
byte

UINT8
(hex)

Element in the record of the Nth dependent
parameter

D

.6xN • Add. Code_N R 2
bytes

UINT16
(hex)

Add. information on the Nth dependent
parameter

D

78/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

002B

ParamSet R/W 2

bytes
UINT16

(hex)
Parameter record identification (index)
if the device has parameter records, the active
parameter record (number/index) is set or
displayed here.
If there is an existing description of the
parameter record, the parameter record
identification is equivalent to the index of the
description.
See “Parameter record identification” section

O

 • 0x0000
The parameter record of the device was not yet initialized via the bus. The
default parameter record applies.
• 0x0001 – 0xFEFF
The parameter record of the device, which has been defined via mechanisms
of the basic profile or freely by the manufacturer, was initialized via the bus.
For identification, it recived the freely definable number/index 0x0001 -
0xFEFF.
• 0xFF00 – 0xFFFD
Reserved
• 0xFFFE
It is not guaranteed that the previously loaded parameter record has not
changed.
This value can only be read.
• 0xFFFF
The device was switched to “local mode”
or manual mode and it is not guaranteed that the previously loaded parameter
record has not changed.

002C

ParameterMoment R/W 20
bytes

Record
(2 elements)

Time of last parameterization modification O

.01 • Date R/W 10+1
bytes

Visible string
(text)

Date YYYY/MM/DD D

.02 • Time R/W 8+1
bytes

Visible string
(text)

Time hh:mm:ss D

002D ResetParam R/W 1
byte

UINT 8
(hex)

Reset parameterization
Used as a command to undo all settings and
replace them with default values.

M

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

79/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

0x00 No action

0x01 Reset parameterization

This command is used to undo all settings and replace them with
factory default values with regard to the state defined in 0x47.3
“LegacyInfo”. This also applies to passwords and other user-defined
settings.
This value is mandatory.

0x02 Reset application parameterization

This command is used to undo just the application parameters and
replace them with default values with regard to the state defined in
0x47.3 “LegacyInfo”. The parameters listed in the “Identification”
section are not application parameters.

0x03 Legacy reset

As with 0x01, relating only to the delivery state.
A so-called “out-of-the-box” state is created.

0x04 Reset legacy application parameterization.
As with 0x02, relating only to the delivery state.

Following completion of the action, the contents are automatically reset to
0x00.

If object 0x47.3 “LegacyInfo” is not available, values 0x01 and 0x03 as well as
0x02 and 0x04 have the same meaning.

002E ParamHash R 4
bytes

UINT32
(hex)

Hash value
Device-specifically generated, unique value
(e.g., CRC16) which ensures integrity of the
parameter data. The security mechanism used
for this involves all the device parameter data.

The hash value is regenerated each time a
parameter is modified and enables the user to
check whether all parameter settings are still
unchanged. To do this, the current hash value
must be compared with the hash value read
during parameterization.

The way the hash value is generated is left up
to the manufacturer. A “change counter” is
also a possibility.
The important thing is that the same hash
value is supplied for identical parameter
records.

O

80/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0040 ListOfObjToRestore

R N x 4
bytes

Array of
records

(3 elements)

List of objects to be restored
List of objects to be restored
List of all application objects [submodule no.
(1 byte) + index (2 bytes) + subindex (1 byte)]
with content that must be restored in the event
of device replacement. Ssee “Device
replacement application” section)

“Factory default” is restored for all objects via
object 0x002D “ResetParam”. Only the objects
with content that currently deviates from the
content prescribed in the “Factory default”
needs to be considered. The list can but does
not have to be dynamic.
In the case of simple devices, this can include
all application objects. It could, however, also
only be object 0xE809 “BackUpDataCompr”.

M

.01 • SubModNo1
• Index1
• Subindex1

R 4 bytes Record
(3 elements)

Submodule number, index and subindex of
the first object
(Subindex = “0” is permissible if the entire
object can be read/written as a result)

M

.02 • SubModNo2
• Index2
• Subindex2

R 4 bytes Record
(3 elements)

Submodule number, index and subindex of
the second object
(Subindex = “0” is permissible if the entire
object can be read/written as a result)

M

 •

.N • SubModNoN
• IndexN
• SubindexN

R 4 bytes Record
(3 elements)

Submodule number, index and subindex of
the Nth object
(Subindex = “0” is permissible if the entire
object can be read/written as a result)

M

Note on object 0x0040 “ListOfObjToRestore”:
The system (higher-level network/controller) decides whether parameters are generally to be
stored and how modifications are to be identified (in particular when they are independent of
the system and supplied directly into the module from outside).

7.4.1 Device replacement application

With the help of this parameter list, device replacement can be optimally carried out using the
following procedure:
Following/during startup of the “system”, the contents of the parameters in this list (this
parameter record) are to be “saved”.
If device replacement is required, a factory reset must always be carried out first on the
compatible replacement device, and the previously saved parameter record then be written
to the replacement device.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

81/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.2 Interdependent parameters

Different parameters may be dependent on one another. This means that the validity of a
parameter value may be dependent on other parameters and can thus only be evaluated if
all the interdependent parameters use their final values.
The “block parameterization” mechanism is used to ensure this.

7.4.2.1 Block parameterization

Block parameterization serves to enable the joint transfer of interdependent parameters. In
terms of communication, writing of several interdependent parameters using block
parameterization is considered and treated like writing a single parameter.
Block parameterization is introduced via parameter “ParamSetWriteControl = 01” and
terminated using “ParamSetWriteControl = 00”.
The dependencies are only checked upon completion of block parameterization.
Correspondingly, any resulting conflicts are reported at this time and not during writing of the
relevant parameters.
Any conflicts that occur are stored in the “Conflict dictionary” (object ConflictDictionary, index
0x002A).

7.4.2.1.1 Block parameterization control (ParamSetWriteControl Index 0x0029)

Transition between individual parameterization and block parameterization is triggered using
this parameter.

ParamSetWriteControl = “0x00”: terminates block parameterization, individual
parameterization from now on
ParamSetWriteControl = “0x01”: initiates block parameterization

The following actions are carried out when the parameter contents are modified:

Initiation of block parameterization (ParamSetWriteControl = “0x00” -> “0x01”)
• Initiation of block parameterization
• No individual parameterization
• Reset of the “Conflict dictionary” list parameter

82/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Completion of block parameterization (ParamSetWriteControl = “0x01” -> “0x00”)
• Termination of block parameterization, individual parameterization from now on
• Assessment of parameter compatibility (parameter conflicts)

It is not mandatory for all the parameters used for assessment to have been written as
part of block parameterization. The module itself determines the objects that are to be
used for the plausibility check.
o If compatible,
 The parameter contents are accepted
 Write access to the “ParamSetWriteControl” parameters is acknowledged positively

o If incompatible,
 The old contents of all the parameters required for block parameterization remain in

effect and the newly written parameters have no effect
 The parameter is entered in the “Conflict dictionary”
 Write access to the “ParamSetWriteControl” parameter is acknowledged negatively,

as follows.

Error class “8”, other, error code “1”, profile-specific

Additional code Meaning
0x0040 DependencyIgnored Collision with other values, dependency ignored

As a rule, dependent values were not taken into consideration.

7.4.2.1.2 Conflict dictionary (ConflictDictionary - index 0x002A)

The parameter contains the indices and error types (additional code) for the parameter
involved in the conflict.
• If the values of two or more interdependent parameters were to cause a conflict, these

parameters would be entered in the conflict dictionary.
• If the values of two or more interdependent parameters no longer cause a conflict, these

parameters are deleted from the conflict dictionary.
This applies whether block parameterization is active or not.

The conflict dictionary must be updated in the event of:
• Negative acknowledgement in the case of completion of block parameterization

(negative confirmation to writing of ParamSetWriteControl = “0x01” -> “0x00”)
• Individual parameterization of interdependent parameters

The conflict dictionary can be updated:
• After each write access to dependent parameters in “Block parameterization” state

The conflict dictionary is deleted:
• On initiation of block parameterization
• When writing any other interdependent parameter outside block parameterization

(individual parameterization)

The conflict dictionary is empty if no consistency violations are identified during
parameterization.

The conflict dictionary can only be filled up to the maximum PDU size. If additional entries
exist, these will be omitted.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

83/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.3 Parameter record identification

This parameter is used to identify the currently effective device parameter record. These can,
for example, refer to a welding program or formula.
Parameter records can be predefined by the manufacturer or loaded by the user depending
on the device using individual or block parameterization or "Download Write" services.
If the device cannot save the received device parameter values so that they are not lost in
the event of a power failure, the device automatically sets the parameter record identification
to “0000” when the mains voltage is switched on. The device user can evaluate this
information and reinitialize accordingly.

A parameter record is always a combination of parameters. There are various handling
options available:

1. The combination can be specified by the manufacturer but cannot be read via
objects. It is simply assigned a number. It is therefore also not mandatory for the
objects that are comprised in the parameter record to be described in object
0x002B.02 - 0x002B.N “ParamSet. ObjectN”. The meaning can be described in the
user manual.

2. The combination can be specified by the manufacturer, and the content and the
structure are made available via object XYZ. It is assigned a number. The XYZ object
must then be defined as described below.
In this case, the parameter record can only contain objects that can be addressed
individually via their individual index/subindex.

3. Same as 2., but the manufacturer allows users to define parameter records
themselves. In this case, object XYZ can be written.

Definition of the object that contains a parameter record:

Index
(hex) Object name R/W Length

Data type
(representatio

n)
Meaning M/O

XYZ ParamSet1

R/WD N
bytes

Record
(3 elements)

Parameter record for an example O

.01 • NoOfObj R/WD 2 bytes UINT16
(dec)

Number of objects
Number of objects combined in this parameter
record

O

.02 • Structure R/WD N x 5
bytes

Array of
records

(3 elements)

Here, the combined objects are listed in the
form
• Index (2 bytes)
• Subindex (1 byte)
• Length of the user data in bytes
(2 bytes)

O

.03 • UserData R/WD N bytes Record
(N elements)

The user data of the objects listed above is
given consecutively without separator here.

O

84/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

7.4.4 Volatile and non-volatile parameters

A number of objects contain non-volatile parameters. This means that they are rarely written,
maybe during startup, and are maintained even after power-down.
There are, however, also a number of objects with content that is constantly changing and
with data that is lost in the case of power-down.

In both cases, the behavior is defined by the name.

There also are mixed forms, although far less frequently.

(1) Objects with parameters that need to be defined in the event of power-on but which might
be constantly changing during the runtime.

Such parameters must be spread to the basic forms. This means that there is one object that
contains the volatile data and one associated object that contains the non-volatile start value
of the volatile parameter following power-on. Therefore, handling of the flash memory
commonly used is taken into account.

(2) Objects with parameters that need to maintain the last of the constantly changing values
recorded during runtime require appropriate storage technology, no definition of handling.

7.4.5 Data backup

Index
(hex) Object name R/W Length

Data type
(representati

on)
Meaning M/O

E809 BackUpDataCompr

UR/
DW

N
bytes

Domain
variable

octet string
(hex)

Compressed data for device backup
The object contains data that is necessary to
back up/restore the device. This can but must
not be all the device data.

The structure of this object is not important. It
is device-/manufacturer-specific.

It must only be ensured that the device
behaves identically when the content of this
object is read from a device, and when this
content is successfully loaded to object
0xE809 “BackUpDataCompr” of a device of
the same device type code.

It is permissible that less data is transmitted to
the slave (e.g., newer FW) than the slave
might be expecting. (The content of the
BackUpDataCompr comes from a device with
an older FW, for example)
For reasons of compatibility, additional data
should only be attached at the end. The
parameters that have not been transmitted
must then be assigned default values.

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

85/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.6 Firmware update

Entry in object 0x0005 “Capabilities”: “FwUpdt0”

The following describes a method for FW update of an I/O module. From the point of view of
the I/O device, the process is independent of the bus system that is on a higher level than
the station (e.g., Sercos, PROFINET, PROFIBUS, EtherNet/IP™) as communication takes
place via the parameter channel.

Marginal conditions
• The I/O module must support the Download Write service (see basic profile, Section 6.1).
• The “upload/download protocol” property (634, 635, 636 or 637) is entered in the

CommunicationProfile (object 0x000E).
• The “FwUpdt0” property is entered in Capabilities (object 0x0005).
• Object “InitFwDownload” (0x0045) and Download Write object “DeviceFw” (0xE807) are

implemented.
• One instance (bootloader) must carry out the corresponding checks and receive the FW

update file.
• The FW update is not permissible in the “RUN” state. The master ensures that the

process data is set to invalid/set to substitute values before and during the FW update.
• The marginal conditions apply to devices with microcontroller.

Dependency info:
If object 0x0045 “InitFWDownload” is implemented, object 0xE807 “DeviceFW” must also be
implemented.

86/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Index
(hex) Object name R/W Length

Data type
(representati

on)
Meaning M/O

0045 InitFWDownload R/W 58
bytes,
maxim

um

Record
(4 elements)

Initializing firmware download
Contains information for the following FW
download and sets the module to the FW
update mode.

O

.01 Status R 1 byte UINT8
(hex)

Status information with regard to the FW
download

D

 • Bit 0: ready for download
This bit is set by the device as soon as it is ready to receive a new FW
via object 0xE807. This bit is typically set when the device switched to
the FW update task following initialization of the update using command
0x01.
The bit is reset with the appearance of bit 3 “FW-Update successful” (or
power-up).

• Bit 1: device FW invalid
This bit shows that the device contains a faulty FW/no FW. It is set when
the bootloader starts up and uses the checksum to determine that the
FW is missing or defective.
The bit is reset with the appearance of bit 15 “FW-Update successful” (or
power-up)

• Bit 2: reserved
• Bit 3: FW update successful

This bit is set by the slave following successful FW update and is only
reset by a read operation and a restart. This ensures that successful
firmware update can also be controlled by various instances.
Independently, the bit is always reset using command 0x01 “Init FW-
Update”.

.02 Control R/W 1 byte UINT8
(hex)

Commands relating to the FW download D

 • 0x00 No action
• 0x01 CMD: init FW update

Using the subsequent fields, the I/O device checks whether the FW is
appropriate and then returns to the FW update task, if applicable.
Alternatively, a corresponding error type is returned.

• 0x02 CMD: prepare restart
The master completes the update using this command, no further blocks
are executed.
The I/O device waits for the reset/power-down signal/command, or the
microcontroller is automatically reset (according to the wiring)

Following completion of the action, the contents are automatically reset to
0x00.

.03 HeaderVersion R/W 2 bytes UINT16
(hex)

Version of the header of the FW update file
It is incremented in the case of changes to the
header
High byte: Incompatible change
Low byte: Compatible extension

D

.04 UpdateVersion R/W 2 bytes UINT16
(hex)

Version of the update process
Is incremented in the event of changes to the
update process
High byte: Incompatible change
Low byte: Compatible extension

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

87/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.05 BaseData R/W N
bytes

Octet string
(hex)

Basic data to check the preconditions for a
FW update.
The information is manufacturer-specific but
should include:
• Firmware version/versions
• HW version/versions
• Device type
• Vendor ID
• Checksum
• Reserved for future expansions

D

E807 DeviceFW UR/
DW

N
bytes

Domain
variable

octet string
 (hex)

Firmware file
Contains the firmware file

D

Error types

The device can reject access to the FW update objects (0x0045 and 0xE807). The following
error types are defined for this purpose:

Device rejects the FW update request using object 0x0045

Error
class

Error code AddInfo Comment

0x08 0x01 0x0022 FW update not possible in the current device status

0x08 0x01 0x0050 General

0x08 0x01 0x0051 Incorrect major header/update version

0x08 0x01 0x0052 Firmware not suitable for hardware

0x08 0x0B 0 x 0000 Device is not yet ready for a restart (busy), in the event of a
control restart
The master might also report a timeout (0x0F12).

Device rejects the FW update using object 0xE807

Error
class

Error code AddInfo Comment

0x08 0x01 0x0022 Device declines write access to object 0xE807 as the FW update
has not yet been started via object 0x0045.

0x08 0x01 0x00A4 Device cannot write the segment, e.g., due to problems with the
flash access.

0x06 0x02 0x0080 Device cannot write the segment, e.g., due to problems with the
flash access: hardware defective

0x08 0x01 0x0050 A block type written via object 0xE807 cannot be processed by
the device, e.g., the length is incorrect

0x08 0x01 0x0053 FW block identical -> Skip block

In addition to the error types defined here, the remaining appropriate error types (e.g., for the
Download Write protocol) can be used.
88/126 7 Standard objects

7.4 Device management
Basisprofil_V3.0_en.doc

x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Procedure

The FW update is initiated via object 0x0045. Using the content of object 0x0045, the device
checks whether the new FW is suitable and acknowledges this positively, or otherwise
negatively (error type, see above).
The device then changes to FW update mode and should report the “Ready for update”
status change as information to the master via object 0x0018 “DiagState”, so that the master
can enter this information in its diagnostic log book.
The device then receives the firmware block via Download Write to object 0xE807. Following
the complete download, the checksum (base data) calculated during download is compared.
The master then initiates the restart of the device using object 0x0045. The device
acknowledges this positively if everything is OK, otherwise negatively. If everything is OK, it
waits until the restart for an explicit signal for restart, or the microcontroller is automatically
restarted (according to the wiring). Alternatively, a power-off – power-on is carried out.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

89/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.7 Password protection

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O

001D Password R/W Maximum
40

bytes

Octet string[40]
(text)

Password
This command is used to transmit a
password (e.g., “Superuser”), which is
valid for subsequent actions. Where
access is attempted without a password or
with an incorrect password, access to
password-protected objects must be
rejected with reference to the absent
access rights.
The password is deactivated in the event
of:
• Communication breakdown
• Bus stop (bus reset)
• No password is written (string length

is “0”)
• Writing an incorrect password

When the object is read, 8x“*” and 0x00
“0x2A2A2A2A 2A2A2A2A0x00” are
returned.
There can be no access protection for this
object.

O

001E SetPassword W 45 bytes,
maximum

Record
(5 elements)

Set password
One or more password(s) are set for a
specific index using this object. The
password is only deleted using the
“ResetParam” command. Then the default
password is valid again.
The manufacturer may have defined a
default password for any object
To prevent modifications to the password,
this object itself can be protected. The one
who protects the “SetPassword” object
actually is the “Superuser”.
Passwords can be preset by the
manufacturer. These are not necessarily
deletable.

O

.01 • SubModNo W 1
byte

UINT8
(hex)

Submodule number
“FF” as a submodule sets the password for
all submodules.
0x00 is returned when the object is read.

D

.02 • Index W 2
bytes

UINT16
(hex)

Index
“FFFF” as an index sets the password for
all objects.
0x0000 is returned when the object is
read.

D

.03 • Subindex W 1
byte

UINT8
(hex)

Subindex
“FF” as the subindex sets the password for
all subobjects.
0x00 is returned when the subobject is
read.

D

90/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

.04 • Add/Replace W 1
byte

Bit string 8
(bin)

Add/replace
0x0X = All existing passwords are
replaced
0x1X = Add to existing passwords
0xX1 = Applies for read access
0xX2 = Applies for write access
0xX3 = Applies for read and write access

0x00 is returned when the object is read.

D

.05 • Password W 40 bytes,
maximum

Octet string[40]
(text)

Password for object “Index”

If “Replace” 0x0X is selected but no
password is entered, password protection
is canceled.

When the object is read, 8x“*” and 0x00
“0x2A2A2A2A 2A2A2A2A0x00” are
returned.

D

If an error occurs when writing/reading the objects, e.g., invalid values are transmitted,
access must be rejected using the appropriate error types (see “List of permissible error
types” section).

Error class: 0x08, error code: 0x01
Additional code

(hex)
Meaning

00B1 The password cannot be replaced (deleted).
00B2 The password cannot be added (too many passwords).
00B3 The password cannot be assigned for the desired type of access.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

91/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.4.8 Energy management (pre-implementation)

Entry in object 0x0005 “Capabilities”: “Energy0”

Entry “Energy0” in object 0x0005 Capabilities indicates that the device supports energy
management.

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O

003D WakeUpTime R 2 bytes UINT16
(dec)

Startup time
Time until ready to operate in ms

Time from switch-on of the supply voltage (if
there are several supply voltages, the time when
the last relevant one is switched on) until the
device is ready to operate (in ms).
Here, “ready to operate” means that the device
responds to all communication requests (e.g.,
writing of parameters) of the master in the
defined manner.
Basic settings, booting of the communication
processor, etc., are complete.
The WakeUpTime does not normally include
applicative times, such as selftests, calibration of
the front end, or times resulting from
dependencies on the control program.

Legacy information:
If this parameter is not available, a default value
of <500 ms is assumed.

M

003E EnergyMgmt R/W 5 bytes Record
(2 elements)

Energy management

The energy-saving modes that are decisive for
energy management are to be specified by the
manufacturer and can be freely defined in the
range 0x01 ... 0x7F.
Note:
Energy management always refers to the direct
and indirect I/O devices of the device. If it cannot
be separated from the communication part, this
can mean, for example, that the entire device is
switched off. This object can then no longer be
read back.

O

92/126 7 Standard objects
7.4 Device management

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

.01 • ActualMode R/W 1
byte

UINT8
(hex)

Current energy-saving mode
0x00 - Power off
0x01 Mode01 (standby)
0x02 – 0x0F Reserved
0x10 – 0x7F Manufacturer-specific
0x80 – 0x87 Reserved
0x88 - Undefined

 It is left to the device to select the most
effective energy-saving mode (might be
the only one). In doing so, the device
must observe the pause time potentially
specified.

0x89 – 0xFE Reserved
0xFF - Fully operational

If this object has not been created, it is assumed
that the module only supports modes “0x00” and
“0xFF”.

The desired energy-saving mode is written.
The energy-saving mode in which the device is
currently operating is read.

D

.02 • Break R/W 4
bytes

UINT32
(dec)

Pause time
Time in seconds (sec) that the device should
stay in energy-saving mode. Thereafter, the
device automatically switches back in to mode
“0xFF - Fully operational”

“0x0000.0000” - Reserved
“0xFFFF.FFFF” - Infinite (device does not
change independently to another energy-saving
mode)

The desired pause time is written.
The time that the device will remain in energy-
saving mode is read.

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.4 Device management

93/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.5 Multilingual capacity

The “Language” object can be used to read the current language selected and select the
language.
The “LanguageAvailable” domain variable indicates which languages are available. The first
entry contains the default language.

Index
(hex) Object name R/W Length Data type

(representation) Meaning M/O Example

0017 Language R/W 65 bytes,
maximum

Record
(2 elements)

Language
Object for selecting the
device language
The currently valid
language may be
accessed or changed
here.

M

.01 • LanguageCode

R/W 5+1
bytes

Visible string
(text)

Language code
Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code,
separated by a “-”, if
desired,
e.g., “en” or “en-us”
If a country code is not
being used, 0x00 will be
entered.
The language code of
the language to be
selected is entered here.
Following a positive
response, all text is to
be output in the selected
language.

M en

.02 • NameLanguage R 50 bytes,
maximum

Visible string
(text)

Language name
The text string for the
currently valid language
may be read here. The
name changes as soon
as a new
“LanguageCode” is
entered.

M English

E804 LanguageAvailable

R Domain
variable
Record

Available languages
Object for device
language selection -
displays all available
languages
Language name,
already in the
corresponding language

O

Seg.1
-a

• LanguageCode1
(default)

R 5+1

Visible string
(text)

Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code
(default), separated by a
“-” if desired

D en-gb

-b

• NameLanguage1
(default)

R 50,
maximum

Visible string
(text)

Text string for the 1st
language available
(default)

D English

94/126 7 Standard objects
7.5 Multilingual capacity

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Seg.2
-a

• LanguageCode2

R 5+1

Visible string
(text)

Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code of the
second language
available, separated by
a “-” if desired

O en

-b

• NameLanguage2 R 50,
maximum

Visible string
(text)

Text string for the
second language
available

O Deutsch

Seg.3
-a

• LanguageCode3

R 5+1

Visible string
(text)

Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code of the
third language available,
separated by a “-” if
desired

O fr

-b

• NameLanguage3

R 50,
maximum

Visible string
(text)

Text string for the third
language available

O Français

Seg.4
-a

• LanguageCode4

R 5+1

Visible string
(text)

Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code of the
fourth language
available, separated by
a “-” if desired

O es

-b

• NameLanguage4

R 50,
maximum

Visible string
(text)

Text string for the fourth
language available

O Español

 ...

 ...

Seg.N
-a

• LanguageCodeN R 5+1

Visible string
(text)

Language code
according to ISO 639-1
and country code
according to ISO 3166-
1-Alpha-2 code of the
Nth language available,
separated by a “-” if
desired

O it

-b

• NameLanguageN R 50,
maximum

Visible string
(text)

Text string for the Nth
language available

O Italiano

The “LanguageCode” subobject (subindex 1) contains the language codes according to ISO
639-1 and the country code according to ISO 3166-1-Alpha-2 code, separated by a “-” if
desired. If a country code is not being used, 0x00 will be entered.
By writing this subobject, the language will be selected. This language then appears in the
“NameLanguage” subobject.
In the case of write access to the entire “Language” object, the entry for the
“NameLanguage” subobject is ignored because the “NameLanguage” subobject has status
“read only”.

Each segment in the “LanguageAvailable” domain variable contains both the
“LanguageCode” and the “NameLanguage” subobjects of the available language. Therefore,
the individual read services of the “Upload Read” macro service (almost) always have
different lengths, but each language entry is always transmitted in its entirety in one
segment. This results in easy handling.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.5 Multilingual capacity

95/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.6 Modular devices - subsystems

Entry in object 0x0005 “Capabilities”: “SubMa_0”

7.6.1 Basics

In addition to compact devices, there are also an increasing number of modular devices.
These are on a lower level than the fieldbus and are, therefore, referred to as subsystems
with submodules from the point of view of a higher-level network. Their handling should also
be taken into account in this profile. A modular device is defined as follows:
• It has exactly one communication access module (header).
• It has N modules, whereby 0 <= N < 253.

Module numbers N = 253, N = 254 and N =255 are reserved.
• A module does not necessarily have to be active/present.
• Each module has its own independent set of objects.

This object area does not need to be the object area described in this basic profile, but is
determined by the subsystem.

This profile describes devices on a lower level than the fieldbus system. Of course, the
fieldbus itself can be implemented as a modular station or even as a gateway below another
fieldbus/network that may have its own rules and profiles. In this case, this is referred to as a
subsystem from the point of view of the higher-level fieldbus/network.

Figure: Range of definitions in the basic profile

The mechanisms and objects described in this section are to be implemented if the device is
a subbus master.

7.6.2 Parameters

Usually, subbus modules also have parameters. These can be directly addressed.
The “ModuleNumber” parameter is used to address objects in the submodules of a modular
device.
That actually is the module for which access was performed. In this way, it is possible to
address the objects in the submodules via the

• Module number
• Index in the submodule
• Subindex in the submodule

Directly, without having to use a tunnel protocol, for example.

96/126 7 Standard objects
7.6 Modular devices - subsystems

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

The behavior for compact devices does not change either. Any module number may be used
here as usual. However, for reasons of consistency we recommend selecting module
number “0x00”.
The header of a modular device can always be addressed using module number “0”, and the
individual modules can be addressed via the corresponding module number.
Addressing of the modules begins with “1”.

As described above, a compact device must always be addressed using module number “0”,
the head of a modular device always using module number “0”, and the individual
submodules (N) uisng 0 < N < 253.
0xFF as the module number is not permissible on modular devices but may appear in a
diagnostic message as the ID for the entire subsystem.

7.6.3 Diagnostics
Fault codes 0xA0XX are defined to be able to report system errors in the modular system
(e.g., module missing) or in communication.
The standard fault codes (see “Fault codes” section) are to be used to report application
errors of modules in the modular system (e.g., I/O voltage missing). In this case, detailed
information (if available) can be read from object 0x0018 “DiagState” of the module, which is
addressed via the module number. An fault code proprietary to the system or submodule can
be stored in subobject 0x0018.09 “DiagState.AddValue”.

Dependency info:
If object 0x0035 “SubBusInfo” is implemented, all other objects in this section must also be
implemented.

Index
(hex) Object name R/

W Length
Data type

(representatio
n)

Meaning M/
O

0035 SubBusInfo R 16 bytes Record
(5 elements)

Subbus information
Basic information on the connected subbus.

O

.01 • SubBusType R 8
bytes

Octet string[8]

Subbus designation
The following are currently defined:
• 0x4153495F30330000 ASI_03
• 0x43414E5F30310000 CAN_01
• 0x44414C495F303100 DALI_01
• 0x4942535F30310000 IBS_01
• 0x494F4C5F30310000 IOL_01
• 0x50425F3031000000 PB_01

The type is exactly 8 characters long.
Unused characters are to be filled with
0x00.

D

.02 • MTStructFormat
• MT length
• PD IN length
• PD OUT length

R 3
bytes

Record
1 entry

Field lengths
Field lengths in objects 0x0036
“ActSubBusStructure” and 0x0041
“RefSubBusStructure”
Field length of “ModuleType” in bytes
(typically: 4)
Field length of “PD IN length” in bytes
(typically: 2)
Field length of “PD OUT length” in bytes
(typically: 2)

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.6 Modular devices - subsystems

97/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.03 • ActNoOfModules R 1

byte
UINT8
(dec)

Number of connected subbus modules
Number of currently connected subbus
modules
= Number of entries in
“ActSubBusStructure”

D

.04 • LastMappedModule R 1
byte

UINT8
(dec)

Last subbus module directly mapped
Last subbus module that can be reached
via the cyclic process data channel (with
regard to “RefSubBusStructure”)

D

.05 • RemainingSystem R 1
byte

UINT8
(dec)

Residual system
Status information on whether a subbus
residual system is currently being operated
or not.
• 0x00:

No residual system is currently being
operated.
The actual configuration
(“ActSubBusStructure”) matches the
reference configuration
(“RefSubBusStructure”).

• 0x01:
A residual system is currently being
operated.
Requirement: the option in object
0x0043.3 “Sub-
BusBehaviour.Remaining” = ON is
selected and one or more modules of
the desired configuration
(“RefSubBusStructure”) are not present
in the actual configuration
(“ActSubBusStructure”).

D

0036 ActSubBusStructure

R N x 8
bytes,

typically

Array of
records
(N x 3

elements)

Actual subsub configuration
The current structure of the modular device
and mapping of the module process data to
the device process data is specified here.
The device type and length of the process
data mapping can be called here for each
module under the subindex with its module
number.

This object is also suitable for describing
compact devices.
Mandatory object for modular devices.

D

.Na • ModuleType R See
object

0x0035.
2

4 bytes,
typically

UINT32
(hex)

Device type identification of the Nth module
specified on the subbus. This can be an
address number in the simplest case.
“0”: there is no module at this position
“0xFF ... FF”: reserved.

D

.Nb • PDINLength R 2
bytes

UINT16
(dec)

Length in bits on the IN process data
channel of the Nth module

D

.Nc • PDOUTLength R 2
bytes

UINT16
(dec)

Length in bits on the OUT process data
channel of the Nth module

D

98/126 7 Standard objects
7.6 Modular devices - subsystems

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0041 RefSubBusStructure

R/
W

N x 8
bytes,

typically

Array of
records
(N x 3

elements)

Desired subbus configuration
The prescribed structure of the modular
device and mapping of the module process
data to the device process data are
specified here.
The device type and length of the process
data mapping can be called here for each
module under the subindex with its module
number.

This object is also suitable for describing
compact devices.
Mandatory object for modular devices.

D

.Na • ModuleType R/
W

See
object

0x0035.
2

4 bytes,
typically

UINT32
(hex)

Device type identification of the Nth module
specified on the subbus. This can be an
address number in the simplest case.
“0”: there is no module at this position
“0xFF..FF”: reserved.

D

.Nb • PDINLength R/
W

2 bytes UINT16
(dec)

Length in bits on the IN process data
channel of the Nth module

D

.Nc • PDOUTLength R/
W

2 bytes UINT16
(dec)

Length in bits on the OUT process data
channel of the Nth module

D

0042 ModuleStatus

R N x
1 byte

Array of
bit strings[8]

Module status on the subbus
The current module status is determined
here, with regard to the desired
configuration “RefSubBusStructure”.

Bit0 = 1: Module reports an fault
Bit1 = 1: Module reports a warning
Bit2 = 1: Module reports information
Bit7 = 0: Module cannot be reached
 = 1: Module can be reached

D

.01 • Module1 R 1 byte UINT8
(hex)

.02 • Module2 R 1 byte UINT8
(hex)

 • …. R 1 byte UINT8
(hex)

.N • ModuleN R 1 byte UINT8
(hex)

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.6 Modular devices - subsystems

99/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

0043 SubBusBehaviour

R 3 bytes Record

(3 elements)
Subbus behavior
Definition of the behavior of the subbus
system

D

.01 • AutoSetup R/
W

1 byte UINT8
(hex)

Automatic startup
Following startup of the subbus master, the
connected subbus can be started in a
number of different ways:
• 0x00 - OFF

No configuration comparison, no
parameterization of the subbus. The
connected subbus is started up as far
as possible.

• 0x01 – ON (default)
Following successful configuration
comparison and parameterization, if
applicable, of the subbus, the subbus is
automatically started up.

The outputs remain in switch-on/substitute
value mode.
The input data should be valid.
The subbus master waits for the
corresponding activities in the higher-level
system to activate the outputs.

.02 • AutoReStart R/
W

1 byte UINT8
(hex)

Automatic restart
• 0x00 - OFF

Following a bus fault, the program will
wait for command 0x03 “Restart” of
object SubBusControlCMD in order to
start up again.

• 0x01 - ON (default)
As soon as a permissible configuration
is recognized (see also “Remaining”),
the subbus is reactivated and also
parameterized, if applicable.

.03 • Remaining R/
W

1 byte UINT8
(hex)

Residual system
• 0x00 - OFF

All submodules must be reachable in
order to be started during startup or
following an fault.

• 0x01 - ON (default)
The subbus is started up with the
reachable submodules (residual
system) during startup or following an
fault.

100/126 7 Standard objects
7.6 Modular devices - subsystems

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

0044 SubBusControl R/

W
1

byte
Record

1 element
Subbus control D

.01 • SubBusControlCMD R/
W

1 byte UINT8
(hex)

Subbus control
• 0x00 – “NoAction”:

No activity
• 0x01 – “Reconfigure”:

Delete stored desired configuration
(RefSubBusStructure), redefine actual
configuration (ActSubBusStructure),
and fix, if applicable

• 0x02 – “SaveConfig”:
Accept actual configuration as the
desired configuration.

• 0x03 – “Restart”:
Subbus restart, restart of the subbus
following a bus error if no “AutoReStart”
is configured in object 0x0043.

• 0x04 – “Stop”:
Stop or reset of the subbus
Restart using command “Restart” or
“Reconfigure”

D

C000
-
C07F

ProjBasProf

See object in the basic profile Projection of basic profile to the subbus
modules

D

 Generic mapping of the properties described by the objects of the basic
profile should also be possible for the submodules. As the necessary data
in the integrated subsystems can be located in any position, the content of
the objects of the basic profile is projected (as far as possible and useful)
into this index range into the address range of the subbus master.
As the subbus number for these objects cannot be used, the number is
mapped to the subindex.
Example:
The serial number (if it existed) (0x0008 in the basic profile) of the third
submodule could generically be reached under
index: 0xC008.03,
even if it can be found a second time at a submodule-specific position.

The limitation caused by the fact that the subobjects of the basic profile can
no longer be addressed, is accepted here, as they can still be fully mapped
due to using subindex = 0x00.

If the object to be projected does not exist in the subbus module,
• error type 0x0607 (No object exists under this index/subindex)
• additional code 0x00A1 (Resource unavailable)
is generated.

.01

..

.FF

• Proj<Objectname> See object in the basic profile
(Subindex = 0x00)

Projected objects of the basic profile D

In the structures above, modules that are not created may cause “gaps” when using slot-
oriented systems. As access to the objects is possible both entirely and via the subindex, the
data record that is empty as a result must nevertheless be implemented. The contents are
then filled with “0” or set to “inactive”.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.6 Modular devices - subsystems

101/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

7.7 Object description

During startup and servicing, it is not only important to know the desired parameterization,
but also to know the actual parameterization of the device. This requires knowledge of the
existing user objects.
These objects and their meaning can be read using the two following profile objects, as they
are mutually dependent.

Dependency info:
All of the mandatory objects not defined in the basic profile must be described via objects
0x0038 “ObjDescrReq” and 0x0039 “ObjDescr”.

Index
(hex) Object name R/W Length Data type Meaning M/O

0038 ObjDescrReq R/W 3 bytes Record
(2 elements)

Object description request
Object whose description is requested

D

.01 • Index R/W 2 bytes UINT16
(hex)

Index D

.02 • Subindex R/W 1 byte UINT8
(hex)

Subindex D

0039 ObjDescr R/WD 58 bytes,
maximum

Record
(16 elements)

Object description
Description of the object whose index was
requested.
Self-incrementing to the next valid
index/subindex at the time of the next access.
Details, see below

D

.01 • Index R 2 bytes UINT16
(hex)

Index
Object number
e.g., 0x6051

D

.02 • Subindex R 1 byte UINT8
(hex)

Subindex
Structure number of an object
e.g., 0x00

D

.03 • ObjectCode R 1 byte UINT8
(hex)

Object code
As specified under “data objects”
e.g., 0x07 - simple variable
Evaluation in the case of complex data
objects, see below

D

.04 • IndexOfType R 1 byte UINT8
(hex)

Data type code
As specified under “data types”
e.g., 0x0A – octet string

D

.05 • Length R 1 byte UINT8
(dec)

Length of the (sub)object
in bytes
e.g., 0x04

D

.06 • UnitText R 5+1 bytes Visible string
(text)

Unit of value - 0x00 terminates
e.g., U/min

D

.07 • UnitCode R 1 byte UINT8
(hex)

Unit variable code of the value according to
table “Indices of physical variables”

e.g., 0x11

D

.08 • UnitCodeExp R 1 byte INT8
(hex)

Unit exponent index according to table
“Indices of physical variables”
As a function of the “UnitCode”, the
“UnitCodeExp” can either contain an
exponent code or a special meaning.

D

102/126 7 Standard objects
7.7 Object description

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

 The special meaning must be determined from table “Indices of physical
variables”. All codes with special meaning are greater than +64. These units
are, for example, the day, hour, or minute, or non-SI-compatible units such as
degrees Fahrenheit, e.g., 95.

For SI units, the unit index specifies the unit exponent code, and thus the
decimal power of the unit value. The value exponent code has a value range
from -127 to 128.

For example,
• Unit index 0 for 100
• Unit index 3 for 103
• Unit index -3 for 10-3
etc.
The listed unit exponent codes for SI-compatible values (unit exponent code
<64) are only used as examples. The value indices for other SI-compatible
prefixes (Pico, etc.) are created accordingly.

.09 • Offset R 2 bytes INT16
(dec)

Offset
Offset of the corresponding value. This must
be added to the process data to calculate the
measured value, taking the resolution into
account.
Example:

The process data value is 12345, the
offset is -15000, this results, taking the
above resolution into account, in a
measured value of -8.84 V

D

.0A • RDR R 2 bytes UINT16
(dec)

ResolutionDimensionRange
Dimension range of the resolution

Resolution RNR
RDR

=

Dimension range of the resolution related to
the unit in which the variable is displayed and
in which the process dat item fluctuate.
Is used for calculating the resolution.
Example: 10 (volts)
 Resolution = 10 V / 3000 = 3.333 mV
The default is “1” here.

D

.0B • RNR R 2 bytes UINT16
(dec)

ResolutionNumberRange
Number range of the resolution

Resolution RNR
RDR

=

Number range of the resolution related to the
dimension range in which the process data
fluctuates.
Is used for calculating the resolution.
Example: 3000
 Resolution = 10 V / 3000 = 3.333 mV
The default is “1” here.

D

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.7 Object description

103/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.0C • Access rights R 1 byte Bit string 8
(bin)

Access rights
Bit 0 = ReadAccess (read rights)

1 = Reading allowed
0 = Reading not allowed

Bit 1 = WriteAccess (write rights)
1= Writing allowed
0 = Writing not allowed

Bit 2 = Read_WithPassword (Bit 0 = “0”)
1= Reading allowed after setting the
password
0= Read rights are independent of the
password

Bit 3 = Write_WithPassword (Bit 0 = “0”)
1= Writing allowed after setting the
password
0= Write rights are independent of the
password

Possible combinations Bit [3 ... 0]:
Bit [3210]
[0001] = Read only
[0010] = Write only (only rarely useful)
[0011] = (Read & write) allowed
[0110] = Write allowed & read allowed after setting

the password
[1001] = Read allowed & write allowed after setting

the password
[1100] = (Read & write) allowed after setting the

password

Bit 4 = Avoid presentation

In tools/engineering, the content of the
object should
1= Not be shown
0 = Be shown

Bits 5-7 Reserved

D

.0D • DisplayFormat R 1 byte UINT8
(hex)

Display format
0x00 - Undefined
0x01 - Binary
0x02 - Unsigned decimal
0x03 - Signed decimal
0x04 - Hexadeximal
0x05 - Text
0x06 - Float
0x07 - Time
0x08 - Date
0x09 - 0xFF Reserved

D

.0E • Min R “Length”
byte

According to
data type

Lower limit
Lower permissible limit of a value.
The length is based on 0x0039.5
“ObjDescr.Length”.
e.g., -500
For all string variables, there is no minimum
value. In this case, the length is 0.

D

.0F • max R “Length”
byte

According to
data type

Upper limit
Upper permissible limit of a value.
The length is based on 0x0039.5
“ObjDescr.Length”.
e.g., 500
For all string variables, there is no maximum
value. In this case, the length is 0.

D

104/126 7 Standard objects
7.7 Object description

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

.10 • Symbol R M+1 byte Visible string
(text)

Name/designation of the object
The length of the name can be filled up to the
maximum PDU size.
For example, set rotation speed
The object is terminated with 0x00.

Note:
On this basis, the following symbol structure
is specified to enable the naming of the
individual bits in a bit string.
<Designation of the bit string>;
<Name of Bit0>;
<Name of Bit1>;
..
<Name of BitN>
A semicolon “;” is used as the separator.
0x00 follows the name of the last bit.
It is possible to skip the designation of an
unused bit with “;;” (two semicolons).
Additional bits accordingly.

D

E805 ObjDescrLong R N
segment

s

Domain
variable
record

Object description (long form)
Description of all available objects
(index/subindex)
One description is transmitted per segment.
Strings are filled with 0x00.

O

Seg.1

ObjDescr1 R 57+1
bytes

Record See above D

… … … …

Seg.N

ObjDescr1 R 57+1
bytes

Record See above D

Example of the content of object 0x0039:
Index:0x0039; subindex: 0; data: [1]6051 [2]00 [3]07 [4]0A [5]04 [6]552F6D696E00 [7]11 [8]00 [9]C568 [10]000A
[11]0BB8 [12]0E [13]05 [14]FFFFFF0C [15]000001F4 [16]536F6C6C647265687A61686C00

Object 0x0039 is auto-incrementing. This means that, after a read access, the description of
the next available index/subindex is provided for the next read access. When the last
subindex of an object has been read, the first subindex of the next object is returned during
the following read access. The index is thus incremented and the subindex starts again from
0.

The process starts again from the beginning when the last subindex of the last index has
been reached.

Example:
0x0200.2, 0x0200.3, 0x0221.0, 0x0240.0, 0x0240.1, 0x0240.2, 0x0240.3, 0x0240.4, …
0x0200.0, 0x0200.1, 0x0200.2, 0x0200.3, …

The auto-increment function of object 0x0039 can easily be used by an application to read all
available indices/subindices and thereby obtain a complete map of all available objects in a
device. The application reads object 0x0039 for this purpose until the index/subindex is
repeated.

Empty objects or unavailable indices and subindices are skipped.

If an unavailable index/subindex is requested by object 0x0038 “ObjDescrReq”, a negative
confirmation with error type, error class 0x08 (application), error code 0x01 (data item uses

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.7 Object description

105/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

an invalid value), additional code 0x0030 (parameter out of range) will be issued. The
description of the next available index/subindex will then be provided in object 0x0039
“ObjDescr”.

For basic profile objects, a description does not have to be stored as it (including subindices)
is known across the system as a result of the basic profile. Only object 0x0039 contains the
index. The remaining entries are missing (length of user data item: 2 bytes).

Index
(hex)

Object
name

R/W Length Data type Meaning M/O

0039 ObjDescr R/WD 2
bytes

Record
(1

element)

Object description
Description of the basic profile
object

O

.01 • Index R 2
bytes

UINT16
(hex)

Object index
e.g., 0x0007

D

In this way, availability of optional objects (including all their subindices) is displayed. A basic
profile object must, therefore, not be skipped.

Example:
A device has objects: 0x6051, 0x6055, 0x6056, 0x6059. Except for object 0x6056, they are all simple objects
without subobjects. Subindices 01, 02, 03, 07 and 08 exist for object 0x6056.
If the description is read via object 0x0039, the auto-increment function generates the following:

Write.req: index:0x0038; subindex: 0; data: 0x6000 00 (object 0x6000.0 is requested)
Read.cnf no.1: index:0x0039; subindex: 0; data: [1]6051 [2]00 [3]07 [4]0A [5]04 … [16]536F6C6C00
Read.cnf no.2: index:0x0039; subindex: 0; data: [1]6055 [2]00 [3]07 [4]0A [5]04 … [16]536F6C00
Read.cnf no.3: index:0x0039; subindex: 0; data: [1]6056 [2]00 [3]09
Read.cnf no.4: index:0x0039; subindex: 0; data: [1]6056 [2]01 [3]07 [4]03 [5]02 … [16]506F7765723100
Read.cnf no.5: index:0x0039; subindex: 0; data: [1]6056 [2]02 [3]07 [4]03 [5]02 … [16]506F7765723200
Read.cnf no.6: index:0x0039; subindex: 0; data: [1]6056 [2]03 [3]07 [4]03 [5]02 … [16]506F7765723300
Read.cnf no.7: index:0x0039; subindex: 0; data: [1]6056 [2]07 [3]07 [4]07 [5]04 … [16]4170706C657300
Read.cnf no.8: index:0x0039; subindex: 0; data: [1]6056 [2]08 [3]07 [4]06 [5]02 … [16]506561727300
Read.cnf no.9: index:0x0039; subindex: 0; data: [1]6059 [2]00 [3]07 [4]0F [5]01 … [16]4d794269747300
Read.cnf no.10: index:0x0039; subindex: 0; data: [1]0001
Read.cnf no.11: index:0x0039; subindex: 0; data: [1]0004
…
Read.cnf no.N: index:0x0039; subindex: 0; data: [1]6051 [2]00 [3]07 [4]0A [5]04 … [16]536F6C6C00

Exception
Process data objects 0x0025 and 0x0026 are an exception since their availability and
function are process-specific, however, their structures are manufacturer-specific and may
only be determined in this way. As such, they must be described completely. The process
data ranges that are marked with “NC” in objects 0x003B “PDIN_Descr” or 0x003C
“PDOUT_Descr” must be described under the corresponding subindex. “Unused” is to be
used as the 0x0039.10 ObjDescr.Symbol.
If a process data direction is not being used but object 0x0025 or 0x0026 exists for technical
reasons, this does not need to be further taken into account. The index is skipped.

If object 0x0039 is not available, process data objects 0x0025 and 0x0026 are specified by
default as bit strings of corresponding length.

All other objects are to be described.

106/126 7 Standard objects
7.7 Object description

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

R/WD
Under certain conditions, the manufacturer may allow for the description of an object to be
specified via this mechanism, or for the description to be modified. If the manufacturer
supports this function, object 0x0039 can also be enabled for writing. However, in such a
case, the object must be password-protected.

Evaluation of complex data objects

For complex data objects, evaluation of object 0x0039 “ObjDescr” ends after subindex
0x0039.3 “ObjDescr.ObjectCode”. Any other 0x0039.4 indices and the following indices are
not important for the data objects in the following table and, therefore, cannot be evaluated.

Object code Object
0x02 Domain variable
0x08 Array variable
0x09 Record variable
0x0a Variable list

Static and dynamic

The description of the entire record/array (subindex 0) is not provided.
In the case of record and array objects, only the individual elements are described (via
subindex).

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.7 Object description

107/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Table: “Indices of physical variables”

Physical variable Variable index

(UnitCode)
Unit Unit exponent index

(UnitCodeExp)
(incomplete)

 0 Without dimension 0
Length (l) 1 Kilometer (km) 3
Length (l) 1 Meter (m) 0
Length (l) 1 Millimeter (mm) -3
Area (A) 2 Square meter (m²) 0
Volume (V) 3 Cubic meter (m³) 0
 Liter (l) -3
Time (t) 4 Second (s) 0
 Minute (min) 70
 Hour (h) 74
 Day (d) 77
 Half waves 78
 Millisecond (ms) -3
 Microsecond (µs) -6
Force (F) 6 Newton (N) 0

Reactive power (Q) 8 Var (var) 0
(Real) power (P) 9 Watt (W) 0
Apparent power (S) 10 Voltampere (VA) 0
RPM (n) 11 Rounds/second (U/s) 0
 Rounds/minute (U/min) 73
 Rounds/hour (U/h) 74
Angle (𝛼𝛼,𝛽𝛽, 𝛾𝛾, ..) 12 Radian (rad) 0
 Second (“) 75
 Minute (') 76
 Degree (°) 77
 Gradian (gon) 78
Speed (v) 13 Meters/second (m/s) 0
 Millimeters/second (mm/s) -3
 Millimeters/minute (mm/min) 79
 Meters/minute (m/min) 80
 Kilometers/minute (km/min) 81
 Millimeters/hour (mm/h) 82
 Meters/hour (m/h) 83
 Kilometers/hour (km/h) 84
Torque (M) 16 Newtonmeter (Nm) 0
Temperature (T) 17 Kelvin (K) 0
 Degrees Celsius (°C) 94
 Degrees Fahrenheit (°F) 95
Electrical voltage (U) 21 Volt (V) 0
Electric current (I) 22 Ampere (A) 0
Electrical resistance (R) 23 Ohm (Ω) 0
Ratio 24 Percent (%) 0
Frequency (f) 28 Hertz (Hz) 0
Steps 32 Steps 0
Encoder resolution 33 Steps/revolution 0
Flow (Q) 34 Cubic meters/second (m³/s) 0
 Liters/second (l/s) -3
 Milliliters/second (ml/s) -6
 Cubic meters/minute (m³/min) 85
 Liters/minute (l/min) 86
 Milliliters/minute (ml/min) 87
Acceleration (a) 35 Meters/second² (m/s²) 0
Pressure (P) 40 Pascal (Pa) 0
 Bar (bar) 5
 Technical atmosphere (at) 85
Efficiency (η) 41 Without dimension 0
(Real) power factor (cos𝜑𝜑) 42 Without dimension 0
Work/energy (W/E) 44 Joule (J) 0

108/126 7 Standard objects
7.7 Object description

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

The unit exponent index corresponds to the exponent (to the basis of 10) as standard:

E.g.,
UnitCodeExp 3 for 103 k (kilo)
UnitCodeExp 0 for 100 without
UnitCodeExp -3 for 10-3 m (milli)
UnitCodeExp -6 for 10-6 µ (micro)
UnitCodeExp -9 for 10-9 n (nano)

7.8 Onboard device description

Each device is represented in the engineering system of the target system by its digital
equivalent - the device description file, There is, however, not only one device description
file, as each system has its own defined format.
To enable online parameterization using manufacturer tools without a system-specific
engineering system, a reduced and compressed onboard device description file is stored on
the device based on its resources. A web browser, for example, can perform an adequate
representation of the parameters using this file.

Index
(hex) Object name R/W Length

Data type
(representatio

n)
Meaning M/O

E808 OnBoardDeviceDescFile UR N
bytes

Domain
variable octet

string
(hex)

Onboard device description file
(compressed)
It contains all the information needed for a
tool, such as a web browser, to
parameterize the device.

O

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

7 Standard objects
7.8 Onboard device description

109/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

8 Handling of individual parameters by the master

8.1 0x002D - ResetParam

The master may not regularly write to object 0x002D “ResetParam” during startup. Similarly,
this object must only be included in the device description file.
Triggering the “Reset Parameter” action writes the default values to the module flash. Writing
to the flash too frequently destroys the flash.

The master can only systematically trigger the “Reset Parameter” action, if it recognizes a
new module that might potentially have been located in a different structure.
However, the action can by suppressed by the application, if a specific parameterization that
should remain unchanged was written to a device outside the system.

Simple older devices may potentially not support this object. It must then be assumed that all
parameters for this device are written.

8.2 Handling the error types

In terms of availability, the master must generally handle the error types as tolerantly as
possible.
This means that, under certain circumstances, the following error types can be ignored.

• 0x06, 0x05 “Attributes do not match”
• 0x06, 0x07 “Object not available”
• 0x08, 0x01 “Value not supported”

This is required to increase availability of the system, and is implemented in the majority of
cases for which an action should generally be triggered.
The default value is accepted as the value in this case, if it is useful for the desired action, or
a default behavior of the device is assumed.

A finite number of repetitions (3, minimum) is useful for the following error types.

• 0x05, 0x01 “Object State Conflict”
• 0x05, 0x03 “Object Constrain Conflict”
• 0x06, 0x0A “Data not yet available”

This should prevent the applications from being unavailable for “technical reasons”. The
corresponding information or an entry should nevertheless be entered in the diagnostic log
book.

8.3 Extensions – access via subindex

The master must assume that individual objects will be extended in future. These extensions
can/will, however, only be achieved using “attachments”.

Addressing via additional subindices is possible without any problems, as they are
independent (sub)objects.

When reading objects via subindix “0” (the entire object is read), more data can be received
than expected. All the elements known to date still have the same meaning. New, additional
elements cannot be evaluated because they are not known. This should, however, not affect
the function of the known elements and of the device.

110/126 8 Handling of individual parameters by the master
8.1 0x002D - ResetParam

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

When writing objects via subindex “0” (the entire object is written), a slave will reject too
much data. The master must then process the parameters for the older version. The slave
can accept less data, if possible. This allows a newer device to be compatible and operated
in an old system.

The corresponding information or an entry should nevertheless be entered in the diagnostic
log book.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

8 Handling of individual parameters by the master
8.3 Extensions – access via subindex

111/126

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

9 Appendix A

9.1 Definition of terms

Substitute values
There can be substitute values for inputs as well as for outputs.
For outputs, they are values that are sent to the I/O devices instead of the process data in case the
process data is no longer valid. This is the case following a bus reset or a process data timeout, for
example.
For inputs, these are values that are transmitted to the process data instead of the application data if
the application is no longer able to deliver valid data. This is the case following a peripheral voltage
failure or a microcontroller failure, for example.

Error type
The error type is the error message that is returned when a service could not be executed (negative
confirmation).
The error type service parameter consists of the following parameters:
Error class 1 byte, UINT8, hexadecimal notation
Error code 1 byte, UINT8, hexadecimal notation
Additional code 2 bytes, UINT16, hexadecimal notation

Firmware
Firmware is the generic term for all components of a device that can be changed externally (without
opening the device). These changes are mostly known as updates.
Components that can usually be changed include:

• Firmware communication processor
• Firmware application processor
• Bootloader
• FPGA image
• etc.

All components are regarded to belong together. One version is allocated to them all together.

Function group
A function group describes the function of the device. The function is defined by means of a unit that is
controlled and parameterized by inputs. In addition, internal signals and parameters can influence the
function. The output of a function group can be connected to the inputs of other functions or made
accessible via the bus.

A function group can include:

• Inputs and outputs
• Internal signals and variables
• Actions
• External signals
• Parameters (services, process data)
• Communication objects

Device parameters
Device parameters are parameters that represent identification, diagnostics and the function of a
device externally via communication. The default values for all basic device parameters - those that
should be the same on all devices - are defined in this profile.

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

9 Appendix A
9.1 Definition of terms

113/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Device profile
The device profile specifies the application functions, which are visible via communication. The
application functions are mapped to the communication by defining the following:
• The communication profile
• The interactions between application functions that are executed via the communication system
• The communication services used and the communication objects that are manipulated using

them

Mapping makes the behavior of the application visible. The application profile definitions ensure
interoperability in an area of application, provided that the devices properties used support this.
In addition, the profile defines device properties, which are important for the user. A distinction is made
between mandatory, optional and manufacturer-specific functions and parameters. If the user uses
only mandatory functions or parameters, devices can be replaced, provided this is supported by the
device properties and settings used. In terms of communication, the devices can always be replaced
by others with the same parameters, regardless of their function.

Index, subindex
The index is used to address a parameter (communication object). The subindex is used within a
parameter, which is created as a structure, to address a subparameter (element of a communication
object).

Communication interface
The communication interface consists of a process data channel and a parameter channel.

Communication profile
The communication profile restricts or classifies the degree of freedom included in the specification of
the transmission medium, according to the application or device group. The communication profile
defines communication services and parameters, which are marked as optional in the specification. All
optional functions and parameters that are not specified in the communication profile remain optional.
Mandatory services and parameters are binding even if they are not specified in the profile. Value
ranges for attributes and parameters are also specified in the profile.

Communication reference
The communication reference is used to address the communication partner. Every communication
relationship between two devices is configured regardless of when it is used. The configuration is
stored in every bus device in a communication relationship list (CRL). An application process identifies
the communication relationship via a local communication reference.

Parameter channel
The parameter channel is a communication channel through which all communication objects can be
accessed. Parameter channel services provide acknowledged access to device parameters, i.e.,
access to a device parameter is confirmed by the device.

PDU
Protocol Data Unit. Data unit to which all information of a protocol on usage and administration is
transmitted.

PD PDU
Process data PDU. Data unit to which the process data of a protocol is transmitted.

Process data description
The manufacturer describes the structure and meaning of the process data in the process data
description.

114/126 9 Appendix A
9.1 Definition of terms

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Process data channel
The process data channel is used for the fast transmission of process data. Data is transmitted in an
unacknowledged way at regular intervals (equidistant) via the process data channel. Process data can
be read and written.
The direction of the process data is regarded as from the bus, i.e.,
• OUT process data is data that is transmitted from the control system to the device. The device

reads this data from the process data channel and transmits it to the process, depending on the
function.

• IN process data is data that is transmitted from the device to the control system. The device writes
this data to the process data channel and thereby transmits it to the control system.

Terminal
A terminal is the physical end point of a signal to a device. It is usually an electrical terminal
connection to which a signal wire is connected.

State machine
A state machine is a defined procedure with branches and repetitions that is schematically displayed.
In this profile, some functions are described using a state machine. A state represents a specific
internal and external behavior. It can only be exited by defined events. These events are assigned
corresponding state transitions. Actions can be executed in a transition. This modifies the state
behavior. When transition is complete, the current state changes to the next state.

9.2 Symbols and abbreviations

Abbreviations
ALI Application layer interface
con Confirmation primitive
D Dependent (Depending on other objects/specific properties. Must be implemented if

dependency exists.)
ind Indication primitive
CRL Communication relationship list
CRL
header

Header of the communication relationship list

CR Communication reference
M Mandatory (obligatory, must always be implemented)
MAP Manufacturing automation protocol
O Optional (can but most not be implemented)
OD Object dictionary
PCP Peripherals communication protocol
PCh Parameter channel
PD Process data
PMS Peripherals message specification
R Read only, this object can only be read
R/W Read/write, this object can be read and written
req Request primitive
res Response primitive
S Selection of one or the other parameter
W Write only, this object can only be written
X This object should no longer be used in future

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

9 Appendix A
9.2 Symbols and abbreviations

115/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

116/126 9 Appendix A
9.2 Symbols and abbreviations

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

10 Appendix B

10.1 Translation table for the object names

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

0001 VendorName Herstellername Manufacturer name Nombre del
fabricante

Nom fabricant Nome produttore 制造商名称

0002 VendorID Herstellerkennung Manufacturer ID Identificación del
fabricante

Identification
fabricant

Identificazione
produttore

制造商ID

0003 VendorText Herstellertext Manufacturer text Texto del fabricante Texte fabricant Testo produttore 制造商文本
0004 DeviceFamily Gerätefamilie Device range Familia de

dispositivos
Gamme d'appareils Gruppo dispositivi 设备范围

0005 Capabilities Geräteeigenschafte
n

Device properties Propiedades de los
dispositivos

Propriétés de
l'appareil

Caratteristiche del
dispositivo

设备属性

0006 ProductFamily Produktfamilie Product range Línea de productos Gamme de produits Famiglia di prodotti 产品类别
0007 ProductName Produktname Product name Nombre del

producto
Nom de produit Nome del prodotto 产品名称

0008 SerialNo Seriennummer Serial number Número de serie Numéro de série Numero serie 序列号
0009 ProductText Produkttext Product text Texto del producto Texte produit Testo del prodotto 产品文本
000A OrderNumber Artikel-Nr. Order no. Código de artículo Référence Cod. art. 订货号
000B HardwareVersion Hardware-Version Hardware version Versión de

hardware
Version matériel Versione hardware 硬件版本

 .01 BuildDate Herstelldatum Manufacturing date Fecha de
fabricación

Date de fabrication Data di produzione 制造日期

 .02 Version Versionskennung Version ID Identificación de la
versión

Identifiant de
version

Riconoscimento
versione

版本ID

000C FirmwareVersion Firmware-Version Firmware version Versión de firmware Version firmware Versione firmware 固件版本
 .01 BuildDate Herstelldatum Manufacturing date Fecha de

fabricación
Date de fabrication Data di produzione 制造日期

 .02 Version Versionskennung Version ID Identificación de la
versión

Identifiant de
version

Riconoscimento
versione

版本ID

000D PChVersion Parameterkanalversi
on

Parameter channel
version

Versión de canal de
parámetros

Version canal de
paramètres

Versione canale
parametro

参数通道版本

 .01 BuildDate Herstelldatum Manufacturing date Fecha de
fabricación

Date de fabrication Data di produzione 制造日期

 .02 Version Versionskennung Version ID Identificación de la
versión

Identifiant de
version

Riconoscimento
versione

版本ID

000E CommProfile Kommunikationsprof
il

Communication
profile

Perfil de
comunicación

Profil de
communication

Protocollo di
comunicazione

通讯配置文件

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

10 Appendix B
10.1 Translation table for the object names

117/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

000F DeviceProfile Geräteprofil Device profile Perfil del dispositivo Profil d'appareil Profilo del
dispositivo

设备配置文件

0010 Reserved Reserviert Reserved Reservado Réservé Riservato 保留
0011 ProfileVersion Profilversion Profile version Versión de perfil Version profil Versione profilo 配置文件版本

 .01 BuildDate Herstelldatum Manufacturing date Fecha de
fabricación

Date de fabrication Data di produzione 制造日期

 .02 Version Versionskennung Version ID Identificación de la
versión

Identifiant de
version

Riconoscimento
versione

版本ID

0012 VendorURL Hersteller-URL Manufacturer URL URL del fabricante URL fabricant URL produttore 制造商URL
0013 OnBoardDeviceDescFileNam

e
Name der OnBoard
Gerätebeschreibung
sdatei

Name of the
onboard device
description file

Nombre del archivo
de descripción del
dispositivo Onboard

Nom du fichier de
description de
l'appareil embarqué

Nome del file di
descrizione del
dispositivo OnBoard

机载设备描述文件名

称

0014 Location Einbauort Installation location Lugar de montaje Emplacement de
montage

Luogo di
installazione

安装位置

0015 EquipmentIdent Betriebsmittelkennz
eichen

Equipment ID Identificador de
equipo

Identification
équipement

Caratteristiche
apparecchiatura

设备ID

0016 ApplDeviceAddr Applikationsspezifis
che Geräteadresse

Application-specific
device address

Dirección de
dispositivo
específica de la
aplicación

Adresse appareil
spécifique à
l'application

Indirizzo dispositivo
specifico per
applicazione

应用特定的设备地址

0017 Language Sprache Language Idioma Langue Lingua 语言
 .01 LanguageCode Sprachencode Language code Código de idioma Code de langue Codice lingua 语言代码
 .02 NameLanguage Sprachenname Language name Nombre de idioma Nom de la langue Nome lingua 语言名称

0018 DiagState Diagnosezustand Diagnostic state Estado de
diagnóstico

Etat de diagnostic Stato diagnosi 诊断状态

 .01 Lfd.Nr. Laufende Nummer Consecutive number Número de orden Numéro d'ordre Numero progressivo 连续号
 .02 Priority Priorität Priority Prioridad Priorité Priorità 优先级
 .03 Channel Kanal Channel Canal Canal Canale 通道
 .04 Code Störungscode Fault code Código de fallo Code de défaut Codice di guasto 错误代码
 .05 MoreFollows Zusatzinformationen Additional

information
Información
adicional

Informations
complémentaires

Informazioni
supplementari

更多信息

 .06 Reserved Reserviert Reserved Reservado Réservé Riservato 保留
 .07 SubModNo Sub-Modul-Nummer Submodule number Número de

submódulo
Numéro sous-
module

Numero di
sottomodulo

子模块号

 .08 FunctionGroup Funktionsgruppe Function group Grupos funcionales Groupe fonctionnel Gruppo funzionale 功能组
 .09 AddValue Zusatzinformation Additional

information
Información
adicional

Information
complémentaire

Informazione
supplementare

更多信息

 .0A TextLength Textlänge Text length Longitud del texto Longueur de texte Lunghezza del testo 文本长度
 .0B Text Diagnosetext Diagnostic text Texto de

diagnóstico
Texte de diagnostic Testo di diagnosi 诊断文本

118/126 10 Appendix B
10.1 Translation table for the object names

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

0019 ResetDiag Diagnosemeldungen
quittieren

Acknowledge
diagnostic message

Acusar recibo de
mensajes de
diagnóstico

Acquitter messages
de diagnostic

Conferma messaggi
di diagnosi

确认诊断信息

001A GetError ClassRepMethod Meldemethode für
Störung

Fault reporting
method

Método de mensaje
para el fallo

Méthode de
signalisation des
défauts

Metodo di
segnalazione in
caso di guasto

错误报告方法

001B TestMode Testbetrieb Test mode Modo de prueba Mode d'essai Funzionamento di
prova

测试模式

001C ControlTrace Steuerung der
Protokollierung

Logging control Sistema de control
del registro

Commande de
l'établissement de
protocoles

Controllo della
registrazione

记录控制

001D Password Passwort Password Contraseña Mot de passe Password 密码
001E SetPassword Passwort setzen Set password Establecer

contraseña
Définir mot de passe Imposta password 设置密码

 .01 SubModNo Sub-Modul-Nummer Submodule number Número de
submódulo

Numéro sous-
module

Numero di
sottomodulo

子模块号

 .02 Index Index Index Índice Index Indice 索引
 .03 Subindex Subindex Subindex Subíndice Sous-index Indice subordinato 子索引
 .04 Add/Replace Ergänzen/Ersetzen Add/replace Completar/reemplaz

ar
Compléter/remplace
r

Completa/Sostituisci 添加/替换

 .05 Passwort Passwort Password Contraseña Mot de passe Password 密码
001F PDTimeout Prozessdaten-

Überwachungszeit
Process data
monitoring time

Tiempo de
monitorización de
datos de proceso

Temps de
surveillance
données de process

Tempo di
monitoraggio dei
dati di processo

过程数据监控时间

0020 PDTimeoutCode Prozessdaten-
Überwachungscode

Process data
monitoring code

Código de
monitorización de
datos de proceso

Temps de
surveillance
données de process

Codice di
monitoraggio dei
dati di processo

过程数据监控代码

0021 PChTimeout Parameterkanal-
Überwachungszeit

Parameter channel
monitoring time

Tiempo de
monitorización de
canal de parámetros

Temps de
surveillance canal
de paramètres

Tempo di
monitoraggio del
canale parametri

参数通道监控时间

0022 PChTimeoutCode Parameterkanal-
Überwachungscode

Parameter channel
monitoring code

Código de
monitorización de
canal de parámetros

Code de
surveillance canal
de paramètres

Codice di
monitoraggio del
canale parametri

参数通道监控代码

0023 AbortCode Verbindungsabbruc
hcode

Connection abort
code

Código de
interrupción de
conexión

Code de rupture de
connexion

Codice di
interruzione
collegamento

连接中断代码

0024 ResetCode Ersatzwertverhalten
bei Bus-Reset
(PDOUT)

Substitute value
behavior during bus
reset (PDOUT)

Comportamiento de
valor sustitutivo en
reset de bus
(PDOUT)

Comportement des
valeurs de
substitution avec
RAZ de bus
(PDOUT)

Andamento del
valore sostitutivo in
caso di reset del bus
(PDOUT)

总线复位期间的替换

值特性 (PDOUT)

0025 PDIN Eingangsprozessdat
en

IN process data Datos de proceso
de entrada

Données d'entrée
de process

Dati di processo in
ingresso

IN过程数据

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

10 Appendix B
10.1 Translation table for the object names

119/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

 .01 … .0N Part N N-ter Teil des
Prozessdatums

Nth part of process
data item

Parte nº n de datos
de proceso

Nième partie de la
donnée de process

Parte Nesima della
data di processo

过程数据项的第N部

分
0026 PDOUT Ausgangsprozessda

ten
OUT process data Datos de proceso

de salida
Données de sortie
de process

Dati di processo in
uscita

OUT过程数据

 .01 … .0N Part N N-ter Teil des
Prozessdatums

Nth part of process
data item

Parte nº n de datos
de proceso

Nième partie de la
donnée de process

Parte Nesima della
data di processo

过程数据项的第N部

分
0027 GetExRight Exklusive

Schreibrechte
anfordern

Request exclusive
write access

Solicitar permisos
de escritura
exclusivos

Demander droits
exclusifs en écriture

Richiedi diritti di
scrittura esclusivi

请求排他写入权限

0028 ChangePDSet Prozessdatenzuordn
ungen einstellen

Set process data
assignment

Configurar
asignaciones de
datos de proceso

Régler affectations
de données de
process

Imposta
assegnazioni dei
dati di processo

设置过程数据分配

0029 ParamSetWriteControl Steuerung der
Blockparametrierun
g

Block
parameterization
control

Sistema de control
de parametrización
de bloque

Commande du
paramétrage par
blocs

Controllo della
parametrizzazione
di blocco

块参数设置控制

002A ConflictDictionary Konfliktverzeichnis Conflict dictionary Registro de
conflictos

Répertoire de
conflits

Cartella conflitti 冲突对象

 .01 ConfGrNo Konfliktguppennum
mer

Number of conflict
group

Número de grupo de
conflictos

Numéro de groupe
de conflits

Numero di gruppo
conflitti

冲突组数目

 .02 Subslot_1 Subslot des ersten
abhängigen
Parameters

Subslot of the first
dependent
parameter

Subslot del primer
parámetro
dependiente

Subslot du premier
paramètre
dépendant

Slot subordinato del
primo parametro
dipendente

第一个相关参数的子

槽位

 .03 Index_1 Index des ersten
abhängigen
Parameters

Index of the first
dependent
parameter

Índice del primer
parámetro
dependiente

Index du premier
paramètre
dépendant

Indice del primo
parametro
dipendente

第一个相关参数的索

引

 .04 Subindex_1 Subindex des ersten
abhängigen
Parameters

Subindex of the first
dependent
parameter

Subíndice del primer
parámetro
dependiente

Sous-index du
premier paramètre
dépendant

Sottoindice del
primo parametro
dipendente

第一个相关参数的子

索引

 .05 Element_1 Element im Record
des ersten
abhängigen
Parameters

Element in the
record of the first
dependent
parameter

Elemento en
registro del primer
parámetro
dependiente

Elément de
l'enregistrement du
premier paramètre
dépendant

Elemento nel record
del primo parametro
dipendente

第一个相关参数记录

中的元素

 .06 Add.Code_1 Zusatzinformation
zum ersten
abhängigen
Parameters

Additional
information about
the first dependent
parameter

Información
adicional sobre el
primer parámetro
dependiente

Informations
complémentaires
relatives au premier
paramètre
dépendant

Informazione
supplementare sul
primo parametro
dipendente

有关第一个相关参数

的附加信息

 …
002B ParamSet Parametersatzkenn

ung
Parameter record
identification

Identificador de
juego de parámetros

Identifiant du jeu de
paramètres

Codice record
parametri

参数记录标识

002C ParameterMoment Zeitpunkt der letzten
Änderung der
Parametrierung

Time of last
parameterization
modification

Momento de la
última modificación
de la
parametrización

Moment de la
dernière
modification du
paramétrage

Ora dell'ultima
modifica della
parametrizzazione

上次参数化修改的时

间

120/126 10 Appendix B
10.1 Translation table for the object names

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

 .01 Date Datum Date Fecha Date Data 日期
 .02 Time Uhrzeit Time Hora Heure Ora 时间

002D ResetParam Parametrierung
zurücksetzen

Reset
parameterization

Restablecer la
parametrización

Réinitialiser le
paramétrage

Resetta
parametrizzazione

复位参数设置

002E ParamHash Hash-Wert Hash value Valor hash Valeur Hash Valore Hash 哈希值
002F PDOUT_Subst Ersatzwert

Ausgangsprozessda
ten

Substitute value for
OUT process data

Valor sustitutivo
datos de proceso de
salida

Valeur de
substitution données
de sortie de process

Valore sostitutivo
dei dati di processo
in uscita

OUT过程数据的替代

值

0030 PF_Code Ersatzwertverhalten
bei Peripheriefehler
(PDIN)

Substitute value
behavior during
peripheral fault
(PDIN)

Comportamiento de
valor sustitutivo en
caso de error en
periferia (PDIN)

Comportement de
valeur de
substitution en cas
d'erreur
périphérique (PDIN)

Andamento
sostitutivo in caso di
errori periferici
(PDIN)

外围设备故障期间的

替换值特性 (PDIN)

0031 PDIN_Subst Ersatzwert
Eingangsprozessdat
en

Substitute value for
IN process data

Valor sustitutivo
datos de proceso de
entrada

Valeur de
substitution données
d'entrée de process

Valore sostitutivo
dati di processo in
ingresso

IN过程数据的替代值

0032 FieldBus_ID Feldbusidentifikati
on / reserviert

Fieldbus
identification/reser
ved

Identificación de
bus de campo /
reservada

Identification bus
de terrain / réservé

Identificazione
bus di campo /
riservato

现场总线标识/保
留

 .01 ID-Code ID-Code ID code Código de ID Code ID Codice ID 识别码
 .02 PDLength Prozessdatenlänge Process data length Longitud de datos

de proceso
Longueur données
de process

Lunghezza dei dati
di processo

过程数据长度

0035 SubBusInfo Sub-Bus-Information Sub-bus information Información de
subbus

Informations sous-
bus

Informazione bus
subordinato

子总线信息

 .01 SubBusType Bezeichnung des
Sub-Busses

Sub-bus designation Denominación del
subbus

Désignation du
sous-bus

Denominazione del
bus subordinato

子总线名称

 .02 MTStructFormat Feldlängen Field lengths Longitudes de
campo

Longueurs de
champs

Lunghezze di
campo

字段长度

 .03 ActNoOfModules Anzahl
angeschlossener
Sub-Bus-Module

Number of
connected sub-bus
modules

Número de módulos
subbus conectados

Nombre de modules
sous-bus raccordés

Numero di moduli
bus subordinato
collegati

连接的子总线模块的

数量

 .04 LastMappedModule Letztes direkt
abgebildetes Sub-
Bus-Modul

Last sub-bus
module directly
mapped

Último módulo
subbus
representado
directamente

Dernier module
sous-bus
directement
représenté

Ultimo modulo bus
subordinato
raffigurato
direttamente

最后一个子总线模块

已直接映射

 .05 RemainingSystem Restsystem Residual system Sistema residual Système résiduel Sistema residuo 剩余系统
0036 ActSubBusStructure Sub-Bus-

Istkonfiguration
Actual sub-bus
configuration

Configuración actual
del subbus

Configuration réelle
sous-bus

Configurazione
effettiva bus
subordinato

实际的子总线组态

0037 DeviceType Gerätetyp Device type Tipo de dispositivo Type d'appareil Tipo di dispositivo 设备类型
0038 ObjDescrReq Anfrage

Objektbeschreibung
Request object
description

Solicitud de
descripción de

Demande
description d'objet

Richiesta
descrizione oggetto

请求对象描述

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

10 Appendix B
10.1 Translation table for the object names

121/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

objeto
 .01 Index Index Index Índice Index Indice 索引
 .02 Subindex Subindex Subindex Subíndice Sous-index Indice subordinato 子索引

0039 ObjDescr Objektbeschreibung Object description Descripción de
objeto

Description d'objet Descrizione oggetto 对象描述

 .01 Index Index Index Índice Index Indice 索引
 .02 Subindex Subindex Subindex Subíndice Sous-index Indice subordinato 子索引
 .03 ObjectCode Objektcode Object code Código de objeto Code d'objet Codice oggetto 对象代码
 .04 IndexOfType Datentypindex Data type index Índice de tipo de

datos
Index type de
données

Indice tipo dati 数据类型索引

 .05 Length Länge des (Sub-
)Objekts

Length of (sub)
object

Longitud del
(sub)objeto

Longueur du (sous)
objet

Lunghezza del
(sotto)oggetto

（子）对象的长度

 .06 UnitText Einheit des Werts Unit of value Unidad del valor Unité de la valeur Unità del valore 值的单位
 .07 UnitCode Einheiten-

Größencode
Unit size code Código de tamaño

de unidades
Unités code de taille Codice di grandezza

unità
单位尺寸代码

 .08 UnitCodeExp Einheitenindex Unit index Índice de unidades Index d'unités Indice unità 单位索引
 .09 Offset Offset Offset Offset Décalage Offset 偏移量
 .0A RDR Dimensionsbereich

der Auflösung
Dimension range of
the resolution

Gama de
dimensiones de la
resolución

Plage
dimensionnelle de la
résolution

Campo
dimensionale della
risoluzione

分辨率的尺寸范围

 .0B RNR Zahlenbereich der
Auflösung

Number range of the
resolution

Rango numérico de
la resolución

Plage numérique de
la résolution

Campo numerico
della risoluzione

分辨率的数字范围

 .0C AccessRights Zugriffsrechte Access rights Derechos de acceso Droits d'accès Diritti di accesso 访问权限
 .0D DisplayFormat Anzeigeformat Display format Formato de

visualización
Format d'affichage Formato di

visualizzazione
显示格式

 .0E Min Untere Grenze Lower limit Límite inferior Limite inférieure Limite inferiore 下限
 .0F Max Obere Grenze Upper limit Límite superior Limite supérieure Limite superiore 上限
 .10 Symbol Name/Bezeichnung

des Objekts
Name/designation of
the object

Nombre /
denominación del
objeto

Nom/désignation de
l'objet

Nome/Denominazio
ne dell'oggetto

对象的名称/称号

003A VersionCount Versionszähler Version counter Contador de
versiones

Compteur de
versions

Contatore versione 版本计数器

 .01 ProfileVersion Profilversion Profile version Versión de perfil Version profil Versione profilo 配置文件版本
 .02 PChVersion Parameterkanalversi

on
Parameter channel
version

Versión de canal de
parámetros

Version du canal de
paramètres

Versione canale
parametro

参数通道版本

 .03 HardwareVersion Hardware-Version Hardware version Versión de
hardware

Version matériel Versione hardware 硬件版本

 .04 FirmwareVersion Firmware-Version Firmware version Versión de firmware Version firmware Versione firmware 固件版本
003B PDIN_Descr Beschreibung der

Eingangsprozessdat
IN process data
description

Descripción de
datos de proceso de

Description des
données d'entrée de

Descrizione dei dati
di processo in

IN过程数据描述

122/126 10 Appendix B
10.1 Translation table for the object names

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

en entrada process ingresso
 .01 Type Typ des I/O-Datums Type of I/O data

item
Referencia de la
fecha de E/S

Type de date E/S Tipo di data I/O I/O数据项的类型

 .02 ChNo Anzahl der Kanäle Number of channels Número de canales Nombre de canaux Numero di canali 通道数
 .03 ChLength Länge eines Kanals Length of a channel Longitud de un

canal
Longueur d'un canal Lunghezza di un

canale
通道长度

003C PDOUT_Descr Beschreibung der
Ausgangsprozessda
ten

OUT process data
description

Descripción de
datos de proceso de
salida

Description des
données de sortie
de process

Descrizione dei dati
di processo in uscita

OUT过程数据描述

 .01 Type Typ des I/O-Datums Type of I/O data
item

Referencia de la
fecha de E/S

Type de date E/S Tipo di data I/O I/O数据项的类型

 .02 ChNo Anzahl der Kanäle Number of channels Número de canales Nombre de canaux Numero di canali 通道数
 .03 ChLength Länge eines Kanals Length of a channel Longitud de un

canal
Longueur d'un canal Lunghezza di un

canale
通道长度

003D WakeUpTime Hochlaufzeit Startup time Tiempo de arranque Temps
d'accélération

Tempo di
avviamento

启动时间

003E EnergyMgmt Energiemanagemen
t

Energy
management

Gestión de energía Gestion de l'énergie Gestione
dell'energia

能源管理

 .01 ActualMode Aktueller
Energiesparmodus

Current energy-
saving mode

Modo de ahorro de
energía actual

Mode actuel
d'économie
d'énergie

Modalità di
risparmio energetico
attuale

当前的节能模式

 .02 Pause Pausenzeit Pause time Tiempo de pausa Durée de pause Tempo di pausa 暂停时间

0040 ListOfObjToRestore
Liste der
wiederherzustellend
en Objekte

List of objects to be
restored

Lista de objetos a
restaurar

Liste des objets à
rétablir

Elenco degli oggetti
da ripristinare

待恢复的对象列表

 .01 … .N
SubModNoN
IndexN
SubindexN

Sub-Modul-
Nummer, Index und
Subindex des N-ten
Objekts

Submodule number,
index and subindex
of the Nth object

Número de
submódulo, índice y
subíndice del objeto
nº n

Numéro du sous-
module, index et
sous-index du
Nième objet

Numero modulo
subordinato, indice
e indice subordinato
dell'oggetto Nesimo

子模块编号，第N个

对象的索引和子索引

0041 RefSubBusStructure
Sub-Bus-
Sollkonfiguration

Desired sub-bus
configuration

Configuración
nominal del subbus

Configuration
consigne de sous-
bus

Configurazione
nominale del bus
subordinato

所需的子总线组态

0042 ModuleStatus Modulstatus im Sub-
Bus

Module status on
the sub-bus

Estado del módulo
en el subbus

Statut de module
dans le sous-bus

Stato modulo nel
bus subordinato

子总线上的模块状态

 .01 … .N ModuleN Status des N-ten
Moduls

Status of the Nth
module

Estado del módulo
nº n

Statut du Nième
module

Stato del Nesimo
modulo

第N个模块的状态

0043 SubBusBehaviour Sub-Bus-Verhalten Sub-bus behavior Comportamiento del
subbus

Comportement
sous-bus

Comportamento del
bus subordinato

子总线特性

 .01 AutoSetup
Automatischer
Anlauf

Automatic startup Secuencia de
activación
automática

Démarrage
automatique

Avvio automatico 自动重启

 .02 AutoRestart Automatischer
Wiederanlauf

Automatic restart Reinicio automático Redémarrage
automatique

Riavvio automatico 自动重启

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

10 Appendix B
10.1 Translation table for the object names

123/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

 .03 Remaining Restsystem Residual system Sistema residual Système résiduel Sistema residuo 剩余系统

0044 SubBusControl Steuerung des Sub-
Busses

Sub-bus control Sistema de control
del subbus

Commande du
sous-bus

Controllo del bus
subordinato

子总线控制

 .01 SubBusControlCMD Sub-Bus Kontrolle Sub-bus control Control del subbus Contrôle du sous-
bus

Controllo del bus
subordinato

子总线控制

0045 InitFWDownload
Firmware-
Download-
Initialisierung

Initializing firmware
download

Inicialización de
descarga de
firmware

Initialisation du
téléchargement du
firmware

Inizializzazione
download firmware

初始化固件下载

 .01 Status Status Status Estado Etat Stato 状态

 .02 Control Steuerung Controller Sistema de control Automate Comando 控制器

 .03 HeaderVersion Header-Information Header information Información de
cabecera

Information en-tête Informazione header 标题版本

 .04 UpdateVersion Update-Version Update version Versión de
actualización

Version
d'actualisation

Versione update 更新版本

 .05 BaseData Basisdaten Basic data Datos básicos Données de base Dati essenziali 基本数据

0047 AddInfo Zusätzliche
Informationen

Additional
information

Informaciones
adicionales

Informations
complémentaires

Informazioni
aggiuntive

更多信息

 .01 AddInfo.SafetyProtType Safety-Protokolltyp Safety protocol type Tipo de protocolo de
seguridad

Type de protocole
Safety

Tipo di protocollo
safety

安全协议类型

 .02 AddInfo.SafetyProtVers Safety-
Protokollversion

Safety protocol
version

Versión de protocolo
de seguridad

Version de protocole
Safety

Versione di
protocollo safety

安全协议版本

 .03 AddInfo.LegacyInfo

Information zu
Vorgängerversionen

Information about
previous version

Información sobre
versiones anteriores

Informations
relatives aux
versions
précédentes

Informazione sulle
versioni precedenti

有关之前版本的信息

C000
…

C07F

 ProjBasProf Projektion des
Basisprofils für Sub-
Busse

Projection of basic
profile for sub-buses

Proyección del perfil
básico para subbus

Projection du profil
de base pour sous-
bus

Proiezione del
profilo di base per
bus subordinati

子总线基本配置文件

的映射

E800 DiagStateLong Diagnosezustand
(Langform)

Diagnostic state
(long form)

Estado de
diagnóstico (formato
largo)

Etat de diagnostic
(forme longue)

Stato di diagnosi
(forma estesa)

诊断状态（长格式）

E801 DiagHistory Diagnosearchiv Diagnostics archive Archivo de
diagnóstico

Archive de
diagnostic

Archivio diagnosi 诊断归档

 .01

DiagState1

Ältester
Diagnosezustand in
der Kurzform

Oldest diagnostic
state in short form

Estado de
diagnóstico más
antiguo en el
formato corto

Etat de diagnostic le
plus ancien, forme
courte

Stato di diagnosi più
vecchio nella forma
breve

短格式中最旧的诊断

状态

 …
 N

DiagStateN

Neuester
Diagnosezustand in
der Kurzform

Newest diagnostic
state in short form

Estado de
diagnóstico más
nuevo en el formato
corto

Etat de diagnostic le
plus récent, forme
courte

Stato di diagnosi più
recente nella forma
breve

短格式中最新的诊断

状态

124/126 10 Appendix B
10.1 Translation table for the object names

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

INTERBUS Club e.V. Basic profile V3.0 19. Apr. 2018

Index Subindex Objektname

(Basisprofil)
DE EN-US ES FR IT ZH-CN

E802 DiagHistoryLong Diagnosearchiv
(Langform)

Diagnostics archive
(long form)

Archivo de
diagnóstico (formato
largo)

Archive de
diagnostic (forme
longue)

Archivio diagnosi
(forma estesa)

诊断归档（长格式）

 .01

DiagState1

Ältester
Diagnosezustand in
der Langform

Oldest diagnostic
state in long form

Estado de
diagnóstico más
antiguo en el
formato largo

Etat de diagnostic le
plus ancien, forme
longue

Stato di diagnosi più
vecchio nella forma
estesa

长格式中最旧的诊断

状态

 …
 N

DiagStateN

Neuester
Diagnosezustand in
der Langform

Newest diagnostic
state in long form

Estado de
diagnóstico más
nuevo en el formato
largo

Etat de diagnostic le
plus récent, forme
longue

Stato di diagnosi più
recente nella forma
estesa

长格式中最新的诊断

状态

E803 TraceBuffer Puffer für
Protokollierung

Logging buffer Búfer para registro Tampon
d'établissement de
protocole

Buffer per
registrazione

记录缓冲区

E804 LanguageAvailable Verfügbare
Sprachen

Available languages Idiomas disponibles Langues disponibles Lingue disponibili 可用的语言

E805 ObjDescrLong Objektbeschreibung
(Langform)

Object description
(long form)

Descripción de
objeto (formato
largo)

Description d'objet
(forme longue)

Descrizione oggetto
(forma estesa)

对象描述（长格式）

E806 ComplDiagState
Vollständiger
aktueller
Diagnosezustand

Complete current
diagnostic state

Estado de
diagnóstico actual
completo

Etat de diagnostic
actuel, complet

Stato di diagnosi
attuale completo

完整的当前诊断状态

.01

DiagState1

Ältester
Diagnosezustand in
der Kurzform

Oldest diagnostic
state in short form

Estado de
diagnóstico más
antiguo en el
formato corto

Etat de diagnostic le
plus ancien, forme
courte

Stato di diagnosi più
vecchio nella forma
breve

短格式中最旧的诊断

状态

 …

N

DiagStateN

Neuester
Diagnosezustand in
der Kurzform

Newest diagnostic
state in short form

Estado de
diagnóstico más
nuevo en el formato
corto

Etat de diagnostic le
plus récent, forme
courte

Stato di diagnosi più
recente nella forma
breve

短格式中最新的诊断

状态

E807 Device FW Firmware-File Firmware file Archivo de firmware Fichier firmware File firmware 固件文件

E808

OnBoardDeviceDescFile

OnBoard
Gerätebeschreibung
sdatei (komprimiert)

Onboard device
description file
(compressed)

Archivo de
descripción de
dispositivos
Onboard
(comprimido)

Fichier de
description de
l'appareil embarqué
(comprimé)

Nome del file di
descrizione del
dispositivo OnBoard
(compresso)

机载设备描述文件名

称（已压缩）

E809

BackUpDataCompr

Komprimierte Daten
für Geräte-Backup

Compressed data
for device backup

Datos comprimidos
para respaldo de
dispositivos

Données
comprimées pour
sauvegarde
d'appareils

Dati compressi per
backup dispositivo

设备备份的压缩数据

Basisprofil_V3.0_en.docx
V. Lutz
V. Lutz

10 Appendix B
10.1 Translation table for the object names

125/126

V. Lutz, system planning

19. Apr. 2018 Basic profile V3.0 INTERBUS Club e.V.

.

.

.

.
- End -

126/126 10 Appendix B
10.1 Translation table for the object names

Basisprofil_V3.0_en.doc
x
V. Lutz

V. Lutz, system planning

	1 Foreword
	2 Application and device properties
	2.1 General

	3 General
	4 Overview
	4.1 Index areas of the communication objects
	4.2 Overview of the standard objects

	5 Communication objects
	5.1 Data types
	5.2 Data objects
	5.2.1 “Domain variable” object
	5.2.1.1 Domain variable - formal description

	5.2.2 “Simple variable” object
	5.2.2.1 Simple variable - formal description

	5.2.3 “Array” object
	5.2.3.1 Array variable - formal description

	5.2.4 “Record” object
	5.2.4.1 Record variable - formal description

	5.2.5 “Variable list” object
	5.2.5.1 Variable list - formal description
	5.2.5.2 Static variable list
	5.2.5.3 Dynamic variable list
	5.2.5.4 Variable lists transmission format

	5.2.6 “String variable” object
	5.2.6.1 String variable - formal description

	6 Services
	6.1 Addressing
	6.1.1 Addressing via subindex equal to “0”
	6.1.2 Addressing via subindex unequal to “0”

	6.2 Data length
	6.3 Busy
	6.4 Macro services
	6.4.1 Download function using write service (Download Write)
	6.4.2 Upload function using read service (Upload Read)
	6.4.3 Variable list download example

	6.5 List of permissible communication error types
	6.5.1.1 Error class and error code
	6.5.2 Additional code

	7 Standard objects
	7.1 Identification
	7.1.1 Device range (DeviceFamily index 0x0004)
	7.1.2 Communication profile (CommProfile, index 0x000E)
	7.1.3 Device profile (DeviceProfile, index 0x000F)

	7.2 Device diagnostics
	7.2.1 Objects
	7.2.1.1 Timing of diagnostic messages
	7.2.1.2 Notification by reading the DiagState object
	7.2.1.3 Notification via message (info report) from the “DiagState” object
	7.2.1.4 Classification of faults (priority of messages)
	7.2.1.5 Fault codes
	7.2.1.5.1 Main groups and subgroups
	7.2.1.5.2 Main groups with subgroups and details
	0000 No fault
	1000 General fault
	2000 Current (flow too high)
	2100 Fault affecting the supply of the device or “device input side” signals
	2200 Fault affecting internal power supply units or “device-internal” signals
	2300 Fault in the power supply or signals for the I/O devices connected to the device (device output side)

	3000 Voltage
	3100 Fault affecting the supply voltage of the device or “device input side” signals
	3200 Fault affecting internal power supply units or “internal device” signals
	3300 Fault on signals for the I/O devices connected to the device (device output side)
	3400 Fault in the supply voltage for the I/O devices

	4000 Temperature - not within the permissible range
	4100 Ambient temperature not OK
	4200 Temperature in the device not OK
	4300 Temperature of an external peripheral device (e.g., drive) not OK
	4400 Temperature of supply unit not OK

	5000 Device hardware fault (only inside device housing)
	5100 Fault in the supply inside and through the device
	5200 Fault in the device application
	5300 Fault of the operator interface and display unit on the device
	5400 Fault in the power section of the device
	5500 Fault in communication with the integrated additional assembly
	5600 Fault in the internal data memory

	6000 Device software fault
	6100 Internal software fault (firmware)
	6200 Fault in the user software on the device
	6300 User parameter (data record) not OK
	6800 Device configuration not OK

	7000 Fault on additional assembly/assemblies
	7100 Fault in the power section
	7200 Fault in measuring circuit
	7300 Fault in the sensor (as a component connected permanently to the device)
	7400 Fault in the calculation circuit
	7500 Fault in communication with additional assembly
	7600 Fault in external data memory
	7700 Open circuit/cable fault

	8000 Monitoring of device function
	8100 Fault in field communication
	8200 Fault in closed-loop control
	8300 Torque controller fault
	8400 Speed controller fault
	8500 Position controller fault
	8600 Positioning controller fault
	8700 Synchro controller fault
	8800 Winding controller fault
	8900 Fault on external sensor (separate device)
	8A00 Fault in external actuator
	8B00 Preventive maintenance required (condition monitoring)
	8F00 Safety fault

	9000 Faults on external devices
	A000 Fault on a modular device - subsystem
	BXXX Reserved
	F000 Fault in additional functions

	7.2.2 Trace data

	7.3 User data management
	7.3.1 Process data management
	7.3.2 Substitute value behavior/power-on behavior
	7.3.2.1 Power-on behavior:
	7.3.2.2 Substitute value behavior (failsafe behavior):

	7.3.3
	7.3.3.1
	7.3.3.2
	7.3.3.3
	7.3.3.4

	7.3.4 Functional safety – safety
	7.3.5 Parameter channel management

	7.4 Device management
	7.4.1 Device replacement application
	7.4.2 Interdependent parameters
	7.4.2.1 Block parameterization
	7.4.2.1.1 Block parameterization control (ParamSetWriteControl Index 0x0029)
	7.4.2.1.2 Conflict dictionary (ConflictDictionary - index 0x002A)

	7.4.3 Parameter record identification
	7.4.4 Volatile and non-volatile parameters
	7.4.5 Data backup
	7.4.6 Firmware update
	7.4.7 Password protection
	7.4.8 Energy management (pre-implementation)

	7.5 Multilingual capacity
	7.6 Modular devices - subsystems
	7.6.1 Basics
	7.6.2 Parameters
	7.6.3 Diagnostics

	7.7 Object description
	7.8 Onboard device description
	7.8.1

	8 Handling of individual parameters by the master
	8.1 0x002D - ResetParam
	8.2 Handling the error types
	8.3 Extensions – access via subindex

	9 Appendix A
	9.1 Definition of terms
	9.2 Symbols and abbreviations

	10 Appendix B
	10.1 Translation table for the object names

