INTERBUS The International Standard IEC 61158

Technical Guidelines INTERBUS Data Cable

V2.0 18.12.2002

Supplement to IEC 61158

Contents

1.	General	5
2.	Reference Source	5
3.	Technical Data	
3.1.	INTERBUS Remote Bus (2-Wire)	7
3.1.1.	Mechanical Requirements	
3.1.2.	Connector Pin Assignment	
3.2.	INTERBUS Installation Remote Bus (2-Wire)	
3.2.1.	Mechanical Requirements	12
3.2.2.	Connector Pin Assignment	13
3.3.	INTERBUS Loop 2	
3.3.1.	Mechanical Requirements	16
3.3.2.	Connector Pin Assignment	
3.4.	INTERBUS S-Line	
3.4.1.	Mechanical Requirements	20
3.4.2.	Connector Pin Assignment	21
4.	Certification Procedure	22
5.	Conformance Mark	22

1. General

Modern automation concepts use serial networking in the "lowest" level, i.e., in the sensor/actuator area of machines and systems. Compared with conventional parallel cabling, serial networks provide enormous potential savings due to reduced cabling costs, shorter startup times, and increased flexibility of machines and systems. In automation technology, transmission reliability is particularly vital in a bus system. As sensitive electronics must be used in the process area near the sensors, the transmission reliability depends on the transmission medium, transmission speed, topology, and self-diagnostics of the bus system. Therefore fieldbus devices and their transmission lines must have appropriate protection against electromagnetic inference. Today, copper cables are used in automation technology as a line-based transmission medium, whereas fiber optics are used in environments subject to high levels of electromagnetic interference.

The INTERBUS standard (IEC 61158) refers to the proven RS-485 interface as the physical transmission medium. These technical guidelines for INTERBUS data cable should thus be regarded as a supplement to the INTERBUS standard.

2. Reference Source

The technical guidelines for cable-based transmission technology in the INTERBUS system as well as the guidelines for optical transmission technology and the guidelines for INTERBUS can be ordered from the INTERBUS Club e.V. at the following address:

INTERBUS Club e.V. Postfach 11 08

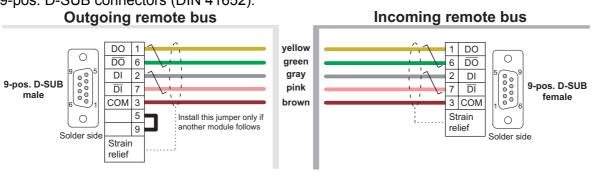
32817 Blomberg, Germany

Phone: +49 - 52 35 - 34 21 00 Fax: +49 - 52 35 - 34 12 34

3. Technical Data

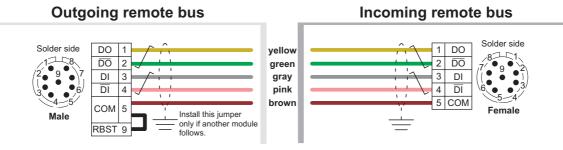
3.1. INTERBUS Remote Bus (2-Wire)

Characteristic Size (20°C [68°F])	Setpoint	Test Method
Number of wires	3 x 2, twisted pair,	
	with common shielding	
Conductor cross section	0.2 mm² (25 AWG), minimum	
DC conductor resistance per	9.6 Ω, maximum	VDE 0472-501
100 m (328.08 ft.)		IEC 189-1 cl. 5-1
Characteristic impedance	120 Ω ±20% at f = 0.064 MHz	
	100 Ω ±15 Ω at f > 1 MHz	IEC 1156-1 cl. 3.3.6
Dielectric strength		VDE 0472-509 test type C
- Wire/wire	1000 V _{rms} , 1 minute	or IEC 189-1 cl. 5.2
- Wire/shield	1000 V _{rms} , 1 minute	
Insulation resistance	150 M Ω , minimum, for 1 km	VDE 0472-502 test type B
(after testing dielectric strength)	(0.62 mi.) cable	or IEC 189-1 cl. 5.3
Maximum transfer impedance		
(coupling resistance)		
- at 30 MHz	250 mΩ/m	IEC 96-1
Effective capacitance at 800 Hz	60 nF, maximum, for 1 km	VDE 0472-504 test type A
	(0.62 mi.) cable	IEC 189-1 cl. 5-4
Minimum near-end crosstalk		VDE 0472-517 or
attenuation (NEXT) for 100 m		IEC 1156-1 cl. 3.3.4
(328.08 ft.) cable		
- at 0.772 MHz	61 dB	
- at 1 MHz	59 dB	
- at 2 MHz	55 dB 50 dB	
- at 4 MHz	46 dB	
- at 8 MHz - at 10 MHz	44 dB	
- at 16 MHz	44 0B	
- at 20 MHz	40 dB	
Maximum wave attenuation for		VDE 0472-515 or
100 m (328.08 ft.) cable		IEC 1156-1 cl. 3.3.2
- at 0.256 MHz	1.5 dB	
- at 0.772 MHz	2.4 dB	
- at 1 MHz	2.7 dB	
- at 4 MHz	5.2 dB	
- at 10 MHz	8.4 dB	
- at 16 MHz	11.2 dB	
- at 20 MHz	11.9 dB	


3.1.1. Mechanical Requirements

Flexible cable must be used for flexible installation (occasionally moved) and for permanent installation in dry and damp rooms.

Setpoint
-20°C to +70°C (-4°F to +158°F)
According to DIN 47100
May green RAL 6017
8 mm (0.315 in.)
64 mm (2.520 in.)
Suitable for: - 9-pos. D-SUB connectors (DIN 41652) - 9-pos. IP 65 circular connectors (Coninvers) - 5-pos. M12 (only for devices with automatic interface recognition [IBS SUPI 3 OPC]) - Terminal blocks


Deviations from the mechanical specifications are permitted for special applications if the electrical features of the cable correspond to the data specified above (in the event of deviations, please refer to the data sheet). A cable connection method should be selected, which will not cause a marked deterioration in the specified electrical data. Particular attention must be paid when selecting the connection method for the shielding. The shielding must be connected in such a way that the conductor cross section is not reduced and the wires are covered with as much of the shielding as possible. The shielding must be led concentrically through the threaded joint as far as possible. The wire pairs must be twisted up to the connection contacts. Two cables should not be connected with each other as losses can be caused by reflections at the connection point and the effectiveness of the shielding could also deteriorate. This is especially relevant if different cable types are connected with one another.

3.1.2. **Connector Pin Assignment**

9-pos. D-SUB connectors (DIN 41652):

9-pos. IP 65 circular connectors (Coninvers):

5-pos. M12 circular connectors:

Caution: only for devices with automatic interface recognition [IBS SUPI3 OPC]

Terminal blocks:

Outgoing remote bus

Incoming remote bus

Pin	Assignment		Pin	Assignment
F	/DO	Green	А	/DO
G	DO	Yellow	В	DO
Н	/DI	Pink	С	/DI
J	DI	Gray	D	DI
K	GND	Brown	Е	GND
L	Jumper			
М	Jumper			

L and M must only be jumpered if they are followed by another module.

3.2. INTERBUS Installation Remote Bus (2-Wire)

The installation remote bus is a special type of 2-wire remote bus, which carries the power supply for the bus logic of subsequent devices in the cable. The cable is mainly used for equipment with IP 65 protection.

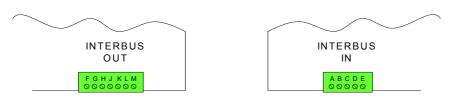
The total expansion of an installation remote bus is limited to 50 m (164.04 ft.). Thus the maximum cable length is also 50 m (164.04 ft.). The electrical characteristics of the data lines correspond, to the greatest possible extent, to that of the 2-wire remote bus cable.

Characteristic Size (20°C [68°F])	Setpoint	Test Method
Number of wires	3 x 2 data lines (twisted pair) and	
	3 power supply lines (common or	
	separate shielding)	
Conductor cross section of data lines	0.2 mm² (25 AWG), minimum	
Conductor cross section of supply lines	1.0 mm² (17 AWG), minimum	
DC conductor resistance per 100 m	9.6 Ω, maximum	VDE 0472-501
(328.08 ft.) data line		IEC 189-1 cl. 5-1
DC conductor resistance per 100 m	2.2 Ω, maximum	VDE 0472-501
(328.08 ft.) supply line		IEC 189-1 cl. 5-1
Characteristic impedance of the wire	120 Ω ±20% at f = 0.064 MHz	
pairs (data lines)	100 Ω ±15 Ω at f > 1 MHz	IEC 1156-1 cl. 3.3.6
Dielectric strength		VDE 0472-509 test type C
- Wire/wire	1000 V _{rms} , 1 minute	or IEC 189-1 cl. 5.2
- Wire/shield	1000 V _{rms} , 1 minute	
Insulation resistance	150 M Ω , minimum, for 1 km	VDE 0472-502 test type B
(after testing dielectric strength)	(0.62 mi.) cable	or IEC 189-1 cl. 5.3
Maximum transfer impedance		011EC 189-1 Cl. 5.5
(coupling resistance)		
- at 30 MHz	250 mΩ/m	IEC 96-1
Effective capacitance of data lines at	60 nF, maximum, for 1 km	VDE 0472-504 test type A
800 Hz	(0.62 mi.) cable	IEC 189-1 cl. 5-4
Minimum near-end crosstalk		VDE 0472-517 or
attenuation (NEXT) for 100 m (328.08		IEC 1156-1 cl. 3.3.4
ft.) cable	61 dB	1EC 1150-1 Cl. 5.5.4
- at 0.772 MHz	59 dB	
- at 1 MHz	55 dB	
- at 2 MHz	50 dB	
- at 4 MHz	46 dB	
- at 8 MHz	44 dB	
- at 10 MHz	41 dB	
	40 dB	
- at 16 MHz		
- at 20 MHz		
Maximum wave attenuation for 100 m		VDE 0472-515 or
(328.08 ft.) cable		IEC 1156-1 cl. 3.3.2
- at 0.256 MHz	3.0 dB	
- at 0.772 MHz	4.8 dB	
- at 1 MHz	5.2 dB	
- at 4 MHz	10.4 dB	
- at 10 MHz	16.8 dB	
- at 16 MHz	22.4 dB	
- at 20 MHz	23.8 dB	

3.2.1. Mechanical Requirements

Flexible cable must be used for flexible installation (occasionally moved) and for permanent installation in dry and damp rooms.

Size	Setpoint
Temperature range	-20°C to +70°C (-4°F to +158°F)
Color coding of the data lines	According to DIN 47100
Color coding of the supply lines	Red, blue, and yellow/green
Sheath color	May green RAL 6017
Maximum outside diameter	8 mm (0.315 in.)
Minimum inside diameter of the sheath	5 mm (0.197 in.)
Minimum bending radius	80 mm (3.150 in.)
Connection method	Suitable for:
	- 9-pos. IP 65 circular connectors
	(Coninvers)
	- Terminal blocks


Deviations from the mechanical specifications are permitted for special applications if the electrical features of the cable correspond to the data specified above (in the event of deviations, please refer to the data sheet). A cable connection method should be selected, which will not cause a marked deterioration in the specified electrical data. Particular attention must be paid when selecting the connection method for the shielding. The shielding must be connected in such a way that the conductor cross section is not reduced and the wires are covered with as much of the shielding as possible. The shielding must be led concentrically through the threaded joint as far as possible. The wire pairs must be twisted up to the connection contacts. Two cables should not be connected with each other as losses can be caused by reflections at the connection point and the effectiveness of the shielding could also deteriorate. This is especially relevant if different cable types are connected with one another.

3.2.2. Connector Pin Assignment

9-pos. IP 65 circular connectors (Coninvers):

Terminal blocks:

Outgoing remote bus

Incoming remote bus

Pin	Assignment		Pin	Assignment
F	/DO	Green	А	/DO
G	DO	Yellow	В	DO
Н	/DI	Pink	С	/DI
J	DI	Gray	D	DI
K	GND	Brown	Е	GND
L	Jumper			
Μ	Jumper			
PE		Yellow/green		PE
+24 V		Red		+24 V
0 V		Blue		0 V

L and M must only be jumpered if they are followed by another module.

3.3. INTERBUS Loop 2

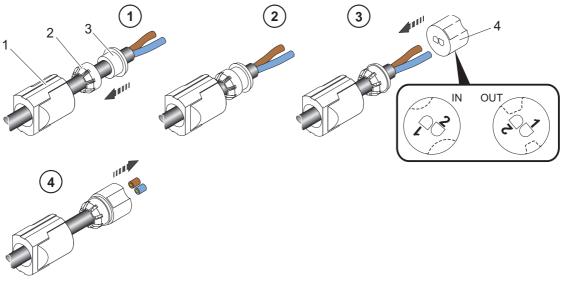
Cable for data transmission/sensor supply 2 x 1.5 mm² (16 AWG)

INTERBUS Loop 2 is a version of the INTERBUS local bus whereby data and power can be transmitted via a single cable. The cable is mainly used to network devices with IP 65 protection.

Characteristic Size (20°C [68°F])	Setpoint	Test Method
Number of wires	2, twisted	
Distance per twist	<= 52 mm (2.05 in.)	
Conductor cross section	1.5 mm² (16 AWG)	
Litz wire structure	Finely stranded	VDE 0295, Class 5
Litz wire structure/maximum wire diameter	0.26 mm (0.010 in.)	VDE 0295, Class 5
Litz wire structure/minimum wire diameter	0.2 mm (0.008 in.)	
DC conductor resistance per 1000 m (3280.84 ft.)	13.3 Ω , maximum for plain single wires	VDE 0295, Class 5
	13.7 Ω, maximum for metal-clad single wires	
Characteristic impedance	75 Ω ±15% at f = 250 kHz to 10 MHz	
Dielectric strength wire/wire	1000 V _{rms} , 1 minute	VDE 0472-509 test type C or IEC 189-1 cl. 5.2
Wire insulation material	PVC/PE	
Insulation resistance (after testing dielectric strength)	20 M Ω , minimum, for 1 km (0.62 mi.) cable	VDE 0472-502 test type B or IEC 189-1 cl. 5.3

3.3.1. Mechanical Requirements

Flexible cable must be used for flexible installation (occasionally moved) and for permanent installation in dry and damp rooms.


Size	Setpoint
Temperature range	-5°C to +70°C (+23°F to +158°F)
Color coding of the wires	Brown, blue
Length marking	Meters marked on the cable: 1 m 2 m3 m to 999 m (3.28 ft6.56 ft9.84 ft. 3277.56 ft.) (no calibration)
Labeling	INTERBUS Loop 2 2 x 1.5 mm ² (16 AWG)
Sheath color	May green RAL 6017
Labeling color	Black
Outside cable diameter (VDE 0281-5)	7.2 mm (0.283 in.), typical, (6.8 - 8.2 mm [0.268 - 0.323 in.])
Outside wire diameter (including insulation)	2.5 mm (0.098 in.)
Minimum bending radius	15 x cable diameter
Environmental compatibility	Free from substances which would hinder coating with paint or varnish
Connection method	Suitable for INTERBUS Loop 2 - Insulation displacement connection method - Terminal blocks

Deviations from the mechanical specifications are permitted for special applications if the electrical features of the cable correspond to the data specified above (in the event of deviations, please refer to the data sheet). A cable connection method should be selected, which will not cause a marked deterioration in the specified electrical data. The wire pairs must be twisted up to the connection contacts. Two cables should not be connected with each other as losses can be caused by reflections at the connection point and the effectiveness of the shielding could also deteriorate. This is especially relevant if different cable types are connected with one another.

3.3.2. Connector Pin Assignment

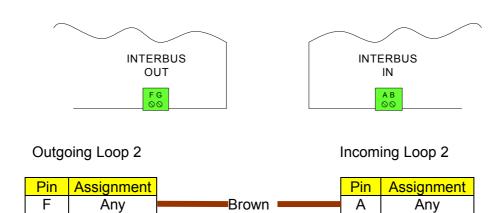
INTERBUS Loop 2 has a special feature, which enables installation to be carried out without the signal polarity having to be observed. Therefore, the pin assignment does not have to be determined.

Insulation displacement connection method:

Outgoing Loop 2

Incoming Loop 2

В


Any

Pin	Assignment		Pin	Assignment
1	Any	Brown	1	Any
2	Any	Blue	2	Any

Terminal blocks:

G

Any

Blue

3.4. INTERBUS S-Line

Cable for data transmission/sensor supply 2 x 2 x 0.5 mm² (20 AWG)

INTERBUS S-Line is a version of the INTERBUS local bus whereby data and power can be transmitted via a single cable. In contrast to INTERBUS Loop 2, forward and return lines are fed in one cable. The cable is mainly used to network devices with IP 65 protection.

Characteristic Size (20°C [68°F])	Setpoint	Test Method
Number of wires	2 x 2 twisted pair	
Distance per twist	<= 52 mm (2.05 in.)	
Conductor cross section	> 0.5 mm² (20 AWG)	
Litz wire structure	Finely stranded	VDE 0295, Class 5
Litz wire structure/maximum wire	0.26 mm (0.010 in.)	VDE 0295, Class 5
diameter		
Litz wire structure/minimum wire	0.2 mm (0.008 in.)	
diameter		
DC conductor resistance per 1000 m	39.2 Ω, maximum	VDE 0472-501
(3280.84 ft.)		IEC 189-1 cl. 5-1
Characteristic impedance	79 Ω ±5 Ω	IEC1156-1 cl. 3.3.6
	at $f = 250$ kHz to 10 MHz	
Dielectric strength wire/wire	1000 V_{rms} , 1 minute	VDE 0472-509 test type C
	roos vims, i mindro	or IEC 189-1 cl. 5.2
Wire insulation material	PVC/PE	
Insulation resistance (after testing	5 G Ω , minimum, for 1 km	VDE 0472-502 test type B
dielectric strength)	(0.62 mi.) cable	or IEC 189-1 cl. 5.3
Maximum transfer impedance		
(coupling resistance)		
- at 30 MHz	250 mΩ/m	IEC 96-1
Effective capacitance of data lines at	110 nF, maximum, for 1 km	VDE 0472-504 test type A
800 Hz	(0.62 mi.) cable	IEC 189-1 cl. 5-4
Minimum near-end crosstalk		VDE 0472-517 or
attenuation		IEC 1156-1 cl. 3.3.4
(NEXT) for 100 m (328.08 ft.) cable		120 1100-1 01. 3.0.4
- at 0.772 MHz	84 dB	
- at 1 MHz	72 dB	
- at 2 MHz	67 dB	
- at 4 MHz	64 dB	
- at 8 MHz	62 dB	
- at 10 MHz	61 dB	
- at 16 MHz	59 dB	
- at 20 MHz	54 dB	
Maximum wave attenuation for 100		VDE 0472-515 or
m (328.08 ft.) cable		IEC 1156-1 cl. 3.3.2
- at 0.256 MHz	0.8 dB	
- at 0.772 MHz	2 dB	
- at 1 MHz	2.5 dB	
- at 4 MHz	7.5 dB	
- at 10 MHz	13.5 dB	
- at 16 MHz	17.5 dB	
- at 20 MHz	22 dB	

3.4.1. Mechanical Requirements

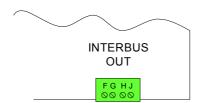
Flexible cable must be used for flexible installation (occasionally moved) and for permanent installation in dry and damp rooms.

Size	Setpoint	
Temperature range: Flexible	-5°C to +80°C (+23°F to +176°F)	
Fixed	-40°C to +80°C (-40°F to +176°F)	
Color coding of the wires	[white, brown], [green, yellow]	
Sheath color	May green RAL 6017	
Labeling color	Black	
Outside cable diameter (VDE 0281-5)	7.2 mm (0.283 in.), typical, (6.8 - 8.2 mm [0.268 -	
	0.323 in.])	
Outside wire diameter (including insulation)	2.5 mm (0.098 in.)	
Minimum bending radius	15 x cable diameter	
Environmental compatibility	Free from substances which would hinder coating v	
	paint or varnish	
Connection method	Suitable for:	
	- M12 connection method	
	- Terminal blocks	

Deviations from the mechanical specifications are permitted for special applications if the electrical features of the cable correspond to the data specified above (in the event of deviations, please refer to the data sheet). A cable connection method should be selected, which will not cause a marked deterioration in the specified electrical data. The wire pairs must be twisted up to the connection contacts. Two cables should not be connected with each other as losses can be caused by reflections at the connection point and the effectiveness of the shielding could also deteriorate. This is especially relevant if different cable types are connected with one another.

3.4.2. **Connector Pin Assignment**

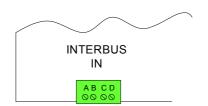
INTERBUS Loop 2 has a special feature, which enables installation to be carried out without the signal polarity having to be observed. Therefore, the pin assignment does not have to be determined.


M12 connection method:

Outgoing S-Line male connector

Pin	Assignment
1	ĪN
2	OUT
3	IN
4	OUT

Terminal blocks:



Outgoing S-Line terminal block

Pin	Assignment	
F	IN	└───── White
G	IN	Brown
Н	OUT	Green
J	OUT	Yellow

Incoming S-Line female connector

Pin	Assignment	
1	ĪN	
2	OUT	
3	IN	
4	OUT	

Incoming S-Line terminal block

	Pin	Assignment
	Α	IN
	В	IN
	С	OUT
/	D	OUT

4. Certification Procedure

The Certification Board Committee of the INTERBUS Club decides the suitability of a data cable based on the manufacturer declaration and the test reports in the same way that it certifies devices with INTERBUS interfaces. The applicant must submit a manufacturer test report, which contains the results of the specified test criteria. The Certification Board Committee of the INTERBUS Club checks whether the requirements specified in the INTERBUS Club Guidelines for data cable have been met. The Board then issues authorization for the INTERBUS mark of conformity (the certification symbol for data cable) to be used, together with a certification number.

5. Conformance Mark

Every data cable manufacturer is entitled to use the conformance mark for data cable (see below) provided the cable meets the technical specifications of these guidelines and the manufacturer has submitted an "application for a conformance mark certificate" to the INTERBUS Club, which has subsequently been approved.

With the "application for a conformance mark certificate" the manufacturer states that all batches displaying the conformance mark meet the technical specifications of these guidelines.

The conformance mark contains the text "INTERBUS Compatible" in black letters on a May green background (RAL 6017), separated by the "INTERBUS Compatible" symbol.

INTERBUS

Compatible